Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 52(1): 13-20, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-16329888

ABSTRACT

The half-life of N-hexanoyl-l-homoserine lactone (C6-HSL) was determined under various pH and temperature conditions, and in several plant environments. C6-HSL was sensitive to alkaline pH, a process that was also temperature-dependent. In addition, C6-HSL disappeared from plant environments, i.e. axenic monocot and dicot plants cultivated under gnotobiotic, hydroponic conditions, albeit with variable kinetics. The disappearance was rapid at the root system of legume plants such as clover or Lotus, and slow or non-existent at the root system of monocots such as wheat or corn. These variable kinetics were not dependent upon pH changes that may have affected the growth media of the plants. Furthermore, C6-HSL did not accumulate in the plant, and the plant did not produce inhibitors of the C6-HSL signal. HPLC analyses revealed that C6-HSL disappeared from the media, and hence, Lotus exhibited a natural C6-HSL inactivating ability. This ability was not specific for C6-HSL and allowed the degradation of other N-acyl-homoserine lactones such as 3-oxo-C6-HSL, 3-oxo-octanoyl-HSL and 3-oxo-decanoyl-HSL. Preliminary investigation revealed that the inactivating ability is temperature-dependant and possibly of enzymatic origin.


Subject(s)
4-Butyrolactone/analogs & derivatives , Gene Expression Regulation, Bacterial/physiology , Lotus/metabolism , Seedlings/metabolism , 4-Butyrolactone/metabolism , Chromatography, High Pressure Liquid , Chromobacterium/physiology , Half-Life , Hydrogen-Ion Concentration , Kinetics , Lotus/microbiology , Rhizobium/physiology , Seedlings/microbiology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...