Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 167(5): 1398-1414.e24, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27863251

ABSTRACT

Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+ monocytes, CD16+ neutrophils, and naive CD4+ T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.


Subject(s)
Epigenomics , Immune System Diseases/genetics , Monocytes/metabolism , Neutrophils/metabolism , T-Lymphocytes/metabolism , Transcription, Genetic , Adult , Aged , Alternative Splicing , Female , Genetic Predisposition to Disease , Hematopoietic Stem Cells/metabolism , Histone Code , Humans , Male , Middle Aged , Quantitative Trait Loci , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...