Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JAMA Neurol ; 80(6): 578-587, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37126322

ABSTRACT

Importance: Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy subtype and is often refractory to antiseizure medications. While most patients with MTLE do not have pathogenic germline genetic variants, the contribution of postzygotic (ie, somatic) variants in the brain is unknown. Objective: To test the association between pathogenic somatic variants in the hippocampus and MTLE. Design, Setting, and Participants: This case-control genetic association study analyzed the DNA derived from hippocampal tissue of neurosurgically treated patients with MTLE and age-matched and sex-matched neurotypical controls. Participants treated at level 4 epilepsy centers were enrolled from 1988 through 2019, and clinical data were collected retrospectively. Whole-exome and gene-panel sequencing (each genomic region sequenced more than 500 times on average) were used to identify candidate pathogenic somatic variants. A subset of novel variants was functionally evaluated using cellular and molecular assays. Patients with nonlesional and lesional (mesial temporal sclerosis, focal cortical dysplasia, and low-grade epilepsy-associated tumors) drug-resistant MTLE who underwent anterior medial temporal lobectomy were eligible. All patients with available frozen tissue and appropriate consents were included. Control brain tissue was obtained from neurotypical donors at brain banks. Data were analyzed from June 2020 to August 2022. Exposures: Drug-resistant MTLE. Main Outcomes and Measures: Presence and abundance of pathogenic somatic variants in the hippocampus vs the unaffected temporal neocortex. Results: Of 105 included patients with MTLE, 53 (50.5%) were female, and the median (IQR) age was 32 (26-44) years; of 30 neurotypical controls, 11 (36.7%) were female, and the median (IQR) age was 37 (18-53) years. Eleven pathogenic somatic variants enriched in the hippocampus relative to the unaffected temporal neocortex (median [IQR] variant allele frequency, 1.92 [1.5-2.7] vs 0.3 [0-0.9]; P = .01) were detected in patients with MTLE but not in controls. Ten of these variants were in PTPN11, SOS1, KRAS, BRAF, and NF1, all predicted to constitutively activate Ras/Raf/mitogen-activated protein kinase (MAPK) signaling. Immunohistochemical studies of variant-positive hippocampal tissue demonstrated increased Erk1/2 phosphorylation, indicative of Ras/Raf/MAPK activation, predominantly in glial cells. Molecular assays showed abnormal liquid-liquid phase separation for the PTPN11 variants as a possible dominant gain-of-function mechanism. Conclusions and Relevance: Hippocampal somatic variants, particularly those activating Ras/Raf/MAPK signaling, may contribute to the pathogenesis of sporadic, drug-resistant MTLE. These findings may provide a novel genetic mechanism and highlight new therapeutic targets for this common indication for epilepsy surgery.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Epilepsy , Neocortex , Humans , Female , Adult , Middle Aged , Male , Epilepsy, Temporal Lobe/surgery , Mitogen-Activated Protein Kinases/metabolism , Retrospective Studies , Hippocampus/pathology , Epilepsy/pathology
2.
ASN Neuro ; 4(3)2012 Apr 05.
Article in English | MEDLINE | ID: mdl-22339481

ABSTRACT

Diseases of the human brain are almost universally attributed to malfunction or loss of nerve cells. However, a considerable amount of work has, during the last decade, expanded our view on the role of astrocytes in CNS (central nervous system), and this analysis suggests that astrocytes contribute to both initiation and propagation of many (if not all) neurological diseases. Astrocytes provide metabolic and trophic support to neurons and oligodendrocytes. Here, we shall endeavour a broad overviewing of the progress in the field and forward the idea that loss of homoeostatic astroglial function leads to an acute loss of neurons in the setting of acute insults such as ischaemia, whereas more subtle dysfunction of astrocytes over periods of months to years contributes to epilepsy and to progressive loss of neurons in neurodegenerative diseases. The majority of therapeutic drugs currently in clinical use target neuronal receptors, channels or transporters. Future therapeutic efforts may benefit by a stronger focus on the supportive homoeostatic functions of astrocytes.


Subject(s)
Astrocytes/pathology , Gliosis/pathology , Neurodegenerative Diseases/pathology , Neurons/pathology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/pathology , Gliosis/drug therapy , Gliosis/metabolism , Homeostasis/drug effects , Homeostasis/physiology , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neurons/drug effects , Neurons/metabolism
3.
J Neurotrauma ; 26(6): 841-60, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19215189

ABSTRACT

Explosive blast has been extensively used as a tactical weapon in Operation Iraqi Freedom (OIF) and more recently in Operation Enduring Freedom(OEF). The polytraumatic nature of blast injuries is evidence of their effectiveness,and brain injury is a frequent and debilitating form of this trauma. In-theater clinical observations of brain-injured casualties have shown that edema, intracranial hemorrhage, and vasospasm are the most salient pathophysiological characteristics of blast injury to the brain. Unfortunately, little is known about exactly how an explosion produces these sequelae as well as others that are less well documented. Consequently, the principal objective of the current report is to present a swine model of explosive blast injury to the brain. This model was developed during Phase I of the DARPA (Defense Advanced Research Projects Agency) PREVENT (Preventing Violent Explosive Neurotrauma) blast research program. A second objective is to present data that illustrate the capabilities of this model to study the proximal biomechanical causes and the resulting pathophysiological, biochemical,neuropathological, and neurological consequences of explosive blast injury to the swine brain. In the concluding section of this article, the advantages and limitations of the model are considered, explosive and air-overpressure models are compared, and the physical properties of an explosion are identified that potentially contributed to the in-theater closed head injuries resulting from explosions of improvised explosive devices (IEDs).


Subject(s)
Blast Injuries/physiopathology , Brain Injuries/physiopathology , Head Injuries, Closed/physiopathology , Military Medicine/methods , Warfare , Animals , Biomechanical Phenomena/physiology , Biomedical Research/instrumentation , Biomedical Research/methods , Blast Injuries/complications , Blast Injuries/pathology , Brain/blood supply , Brain/pathology , Brain/physiopathology , Brain Injuries/etiology , Brain Injuries/pathology , Cerebral Arteries/diagnostic imaging , Cerebral Arteries/injuries , Cerebral Arteries/physiopathology , Cerebral Hemorrhage, Traumatic/etiology , Cerebral Hemorrhage, Traumatic/pathology , Cerebral Hemorrhage, Traumatic/physiopathology , Disease Models, Animal , Explosive Agents/adverse effects , Head Injuries, Closed/etiology , Head Injuries, Closed/pathology , Military Medicine/instrumentation , Military Medicine/statistics & numerical data , Pressure/adverse effects , Protective Clothing/standards , Protective Clothing/trends , Radiography , Sus scrofa , Thoracic Injuries/complications , Thoracic Injuries/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...