Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Chemosphere ; 181: 343-351, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28456036

ABSTRACT

Routine monitoring of contaminant levels in wildlife is important for understanding chemical exposure and ultimately the link to ecosystem and human health. This is particularly important when the monitored species is recreationally hunted for human consumption. In the southeastern United States, recreational alligator harvesting takes place annually and in locations that are known to be contaminated with environmental pollutants. In this study, we investigated the biodistribution of trace elements in the American alligator (Alligator mississippiensis) from five sites in Florida, USA. These sites are locations where annual recreational alligator harvesting is permitted and two of the sites are identified as having high mercury contamination with human consumption advisories in effect. We utilized routinely collected monitoring samples (blood and scute), a commonly consumed tissue (muscle), and a classically analyzed tissue for environmental contaminants (liver) to demonstrate how the trace elements were distributed within the American alligator. We describe elemental tissue compartmentalization in an apex predator and investigate if noninvasive samples (blood and scute) can be used to estimate muscle tissue concentrations for a subset of elements measured. We found significant correlations for Hg, Rb, Se, Zn and Pb between noninvasive samples and consumed tissue and also found that Hg was the only trace metal of concern for this population of alligators. This study fills a gap in trace elemental analysis for reptilian apex predators in contaminated environments. Additionally, comprehensive elemental analysis of routinely collected samples can inform biomonitoring efforts and consumption advisories.


Subject(s)
Alligators and Crocodiles/metabolism , Trace Elements/pharmacokinetics , Water Pollutants, Chemical/pharmacokinetics , Animals , Environmental Monitoring , Florida , Tissue Distribution , Trace Elements/analysis , United States , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 545-546: 389-97, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26748003

ABSTRACT

Mercury is a widespread environmental contaminant with exposures eliciting a well-documented catalog of adverse effects. Yet, knowledge regarding the underlying mechanisms by which mercury exposures are translated into biological effects remains incomplete. DNA methylation is an epigenetic modification that is sensitive to environmental cues, and alterations in DNA methylation at the global level are associated with a variety of diseases. Using a liquid chromatography tandem mass spectrometry-based (LC-MS/MS) approach, global DNA methylation levels were measured in red blood cells of 144 wild American alligators (Alligator mississippiensis) from 6 sites with variable levels of mercury contamination across Florida's north-south axis. Variation in mercury concentrations measured in whole blood was highly associated with location, allowing the comparison of global DNA methylation levels across different "treatments" of mercury. Global DNA methylation in alligators across all locations was weakly associated with increased mercury exposure. However, a much more robust relationship was observed in those animals sampled from locations more highly contaminated with mercury. Also, similar to other vertebrates, global DNA methylation appears to decline with age in alligators. The relationship between age-associated loss of global DNA methylation and varying mercury exposures was examined to reveal a potential interaction. These findings demonstrate that global DNA methylation levels are associated with mercury exposure, and give insights into interactions between contaminants, aging, and epigenetics.


Subject(s)
Alligators and Crocodiles/physiology , DNA Methylation , Mercury/toxicity , Water Pollutants, Chemical/toxicity , Aging/drug effects , Animals , Florida , Mercury/metabolism , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...