Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci ; 40(5): 921-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26648037

ABSTRACT

The prasinophytes (early diverging Chlorophyta), consisting of simple unicellular green algae, occupy a critical position at the base of the green algal tree of life, with some of its representatives viewed as the cell form most similar to the first green alga, the 'ancestral green flagellate'. Relatively large-celled unicellular eukaryotic phytoflagellates (such as Tetraselmis and Scherffelia), traditionally placed in Prasinophyceae but now considered as members of Chlorodendrophyceae (core Chlorophyta), have retained some primitive characteristics of prasinophytes. These organisms share several ultrastructural features with the other core chlorophytes (Trebouxiophyceae, Ulvophyceae and Chlorophyceae). However, the role of Chlorodendrophycean algae as the evolutionary link between cellular individuality and cellular cooperation has been largely unstudied. Here, we show that clonal populations of a unicellular chlorophyte, Tetraselmis indica, consist of morphologically and ultrastructurally variant cells which arise through asymmetric cell division. These cells also differ in their physiological properties. The structural and physiological differences in the clonal cell population correlate to a certain extent with the longevity and function of cells.


Subject(s)
Chlorophyta/cytology , Asymmetric Cell Division , Chlorophyta/physiology , Microscopy, Electron, Transmission , Stress, Physiological , Temperature
2.
Mar Pollut Bull ; 68(1-2): 99-105, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23337372

ABSTRACT

As implementation of the Ballast Water Convention draws nearer a major challenge is the development of protocols which accurately assess compliance with the D-2 Standard. Many factors affect the accuracy of assessment: e.g. large volume of ballast water, the shape, size and number of ballast tanks and the heterogeneous distribution of organisms within tanks. These factors hinder efforts to obtain samples that truly represent the total ballast water onboard a vessel. A known cell density of Tetraselmis suecica was added to a storage tank and sampled at discharge. The factors holding period, initial cell density and sampling interval affected representativeness. Most samples underestimated cell density, and some tanks with an initial cell density of 100 cells ml(-1) showed <10 cells ml(-1) at discharge, i.e. met the D-2 standard. This highlights difficulties in achieving sample representativeness and when applied to a real ballast tank this will be much harder to achieve.


Subject(s)
Environmental Monitoring/methods , Environmental Policy , Introduced Species/legislation & jurisprudence , Ships , Water Pollutants/standards , Compliance , Introduced Species/statistics & numerical data , Microalgae/growth & development , Microalgae/isolation & purification , Water Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...