Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 23(4): 2977-86, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26315591

ABSTRACT

In soil, the determination of total concentration using an exhaustive extraction method has little relevance to evaluate the exposure of an organism to a chemical, because of sorption processes. This study aims to propose a mild extraction method to evaluate the bioavailability of the fungicide epoxiconazole to the earthworm Aporrectodea icterica. Experiments were conducted in soils presenting various textures and organic carbon contents, spiked with formulated epoxiconazole 7 to 56 days prior to their extraction. In parallel, the epoxiconazole concentration was determined in exposed earthworms and the fungicide's effects were evaluated by measuring weight gain, enzymatic activities and total protein contents. Among the various mild chemical solvents tested to evaluate the environmental availability of the fungicide, the 50 mM hydroxypropyl-ß-cyclodextrin solution allowed to extract around 30% of epoxiconazole. This percentage corresponded to the ratio determined in exposed A. icterica under similar soil conditions. Furthermore, this mild method was demonstrated to be sensitive to soil sorption capacities and to ageing. The mild extraction method was then applied to explore the relationship between total and (bio)available concentrations in soil and in A. icterica, over 7- or 28-day exposure time. This demonstrated the proportionality between epoxiconazole concentration in earthworm and available in soil (up to 96%, with regression coefficient R(2) = 0.98). Sublethal effects on earthworm remained not significant.


Subject(s)
Environmental Monitoring/methods , Epoxy Compounds/analysis , Fungicides, Industrial/analysis , Oligochaeta/metabolism , Soil Pollutants/analysis , Soil/chemistry , Triazoles/analysis , Animals , Biological Availability , Epoxy Compounds/metabolism , Epoxy Compounds/toxicity , Fungicides, Industrial/metabolism , Fungicides, Industrial/toxicity , Oligochaeta/drug effects , Oligochaeta/enzymology , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Triazoles/metabolism , Triazoles/toxicity , Weight Gain/drug effects
2.
Environ Sci Pollut Res Int ; 23(4): 3053-61, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26081777

ABSTRACT

Earthworms play a key role in agroecosystem soil processes. This study aims to assess the effects of different doses of a commercial formulation of epoxiconazole (Opus®), a persistent and widely used fungicide, on the earthworm Aporrectodea icterica. A laboratory study was conducted in a natural soil in order to measure effects of Opus® on earthworm mortality, uptake, weight gain, enzymatic activities (catalase and glutathione-S-transferase), and energy resources (lipids and glycogens). The estimated LC50 was 45.5 mg kg(-1), or 268 times the recommended dose. Weight gains were 28, 19, and 13% of the initial weight after 28 days of exposure in the control and D1 and D10 (1 and 10 times the recommended dose) treatments, respectively. No difference was observed for catalase activity between the three treatments, at 7, 14, or 28 days. The glutathion-S-transferase (GST) activity was two times as high in D1 as in D0 at 14 days. At 28 days, glycogen concentration was lower in D10 than in the D1 treatment. This study highlighted moderate sublethal effects of the commercial formulation Opus® for earthworms. Considering that these effects were observed on a species found in cultivated fields, even at recommended rates, much more attention should be paid to this pesticide.


Subject(s)
Environmental Monitoring/methods , Epoxy Compounds/toxicity , Fungicides, Industrial/toxicity , Oligochaeta/drug effects , Soil Pollutants/toxicity , Triazoles/toxicity , Animals , Catalase/metabolism , Dose-Response Relationship, Drug , Glutathione Transferase/metabolism , Lethal Dose 50 , Oligochaeta/enzymology , Oligochaeta/growth & development , Oxidative Stress/drug effects , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...