Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(12): 121801, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37027868

ABSTRACT

Fundamental physical constants are determined from a collection of precision measurements of elementary particles, atoms, and molecules. This is usually done under the assumption of the standard model (SM) of particle physics. Allowing for light new physics (NP) beyond the SM modifies the extraction of fundamental physical constants. Consequently, setting NP bounds using these data, and at the same time assuming the Committee on Data of the International Science Council recommended values for the fundamental physical constants, is not reliable. As we show in this Letter, both SM and NP parameters can be simultaneously determined in a consistent way from a global fit. For light vectors with QED-like couplings, such as the dark photon, we provide a prescription that recovers the degeneracy with the photon in the massless limit and requires calculations only at leading order in the small new physics couplings. At present, the data show tensions partially related to the proton charge radius determination. We show that these can be alleviated by including contributions from a light scalar with flavor nonuniversal couplings.

2.
Phys Rev Lett ; 127(25): 251801, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-35029437

ABSTRACT

We show that muonium spectroscopy in the coming years can reach a precision high enough to determine the anomalous magnetic moment of the muon below one part per million (ppm). Such an independent determination of muon g-2 would certainly shed light on the ∼2 ppm difference currently observed between spin-precession measurements and (R-ratio based) standard model predictions. The magnetic dipole interaction between electrons and (anti)muons bound in muonium gives rise to a hyperfine splitting (HFS) of the ground state which is sensitive to the muon anomalous magnetic moment. A direct comparison of the muonium frequency measurements of the HFS at J-PARC and the 1S-2S transition at PSI with theory predictions will allow us to extract muon g-2 with high precision. Improving the accuracy of QED calculations of these transitions by about 1 order of magnitude is also required. Moreover, the good agreement between theory and experiment for the electron g-2 indicates that new physics interactions are unlikely to affect muonium spectroscopy down to the envisaged precision.

3.
Phys Rev Lett ; 120(9): 091801, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29547329

ABSTRACT

We explore a method to probe new long- and intermediate-range interactions using precision atomic isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the standard model nuclear effects. We apply our method to existing Ca^{+} data and project its sensitivity to conjectured new bosons with spin-independent couplings to the electron and the neutron using narrow transitions in other atoms and ions, specifically, Sr and Yb. Future measurements are expected to improve the relative precision by 5 orders of magnitude, and they can potentially lead to an unprecedented sensitivity for bosons within the 0.3 to 10 MeV mass range.

SELECTION OF CITATIONS
SEARCH DETAIL
...