Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 6458, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833267

ABSTRACT

Controlling the propagation and emission of light via Bloch surface waves (BSWs) has held promise in the field of on-chip nanophotonics. BSW-based optical devices are being widely investigated to develop on-chip integration systems. However, a coherent light source that is based on the stimulated emission of a BSW mode has yet to be developed. Here, we demonstrate lasers based on a guided BSW mode sustained by a gain-medium guiding structure microfabricated on the top of a BSW platform. A long-range propagation length of the BSW mode and a high-quality lasing emission of the BSW mode are achieved. The BSW lasers possess a lasing threshold of 6.7 µJ/mm2 and a very narrow linewidth reaching a full width at half maximum as small as 0.019 nm. Moreover, the proposed lasing scheme exhibits high sensitivity to environmental changes suggesting the applicability of the proposed BSW lasers in ultra-sensitive devices.

2.
Adv Mater ; 35(42): e2303203, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37587849

ABSTRACT

Although chiral semiconductors have shown promising progress in direct circularly polarized light (CPL) detection and emission, they still face potential challenges. A chirality-switching mechanism or approach integrating two enantiomers is needed to discriminate the handedness of a given CPL; additionally, a large material volume is required for sufficient chiroptical interaction. These two requirements pose significant obstacles to the simplification and miniaturization of the devices. Here, room-temperature chiral polaritons fulfilling dual-handedness functions and exhibiting a more-than-two-order enhancement of the chiroptical signal are demonstrated, by embedding a 40 nm-thick perovskite film with a 2D chiroptical effect into a Fabry-Pérot cavity. By mixing chiral perovskites with different crystal structures, a pronounced 2D chiroptical effect is accomplished in the perovskite film, featured by an inverted chiroptical response for counter-propagating CPL. This inversion behavior matches the photonic handedness switch during CPL circulation in the Fabry-Pérot cavity, thus harvesting giant enhancement of the chiroptical response. Furthermore, affected by the unique quarter-wave-plate effects, the polariton emission achieves a chiral dissymmetry of ±4% (for the emission from the front and the back sides). The room-temperature polaritons with the strong dissymmetric chiroptical interaction shall have implications on a fundamental level and future on-chip applications for biomolecule analysis and quantum computing.

3.
ACS Appl Mater Interfaces ; 15(30): 36945-36950, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37463328

ABSTRACT

Circularly polarized emission (CPE) plays an important role in the designs of advanced displays and photonic integrated circuits. Unfortunately, the control of CPE handedness is limited by the chiral metasurfaces employed to emit chiral light. Particularly, the switching of the handedness with chiral metasurfaces relies on flipping the metasurfaces, which adds some constraints to practical applications. Herein, we propose an angle-sensitive chiral metamirror with Mie resonators to realize handedness switching. The Mie resonator supports a magnetic dipole having large field enhancement. This chiral metamirror is applied to excite CPEs with opposite handedness at emission angles within 10°. In contrast to the conventional methods, this work proposes a more efficient approach to manipulate the handedness of CPE.

4.
Small ; 18(44): e2204070, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36123147

ABSTRACT

Solution-process perovskite quantum dots (QDs) are promising materials to be utilized in photovoltaics and photonics with their superior optical properties. Advancements in top-down nanofabrication for perovskite are thus important for practical photonic and plasmonic devices. However, different from the chemically synthesized nano/micro-structures that show high quality and low surface roughness, the perovskite QD thin film prepared by spin-coating or the drop-casting process shows a large roughness and inhomogeneity. Low-roughness and low-optical loss perovskite QD thin film is highly desired for photonic and optoelectronic devices. Here, this work presents a pressure-assisted ligand engineering/recrystallization process for high-quality and well-thickness controlled CsPbBr3 QD film and demonstrates a low-threshold and single-mode plasmonic lattice laser. A recrystallization process is proposed to prepare the QD film with a low roughness (RMS = 1.3 nm) and small thickness (100 nm). Due to the low scattering loss and strong interaction between gain media and plasmonic nanoparticles, a low lasing threshold of 16.9 µJ cm-2 is achieved. It is believed that this work is not only important to the plasmonic laser field but also provides a promising and general nanofabrication method of solution-processed QDs for various photonic and plasmonic devices.

5.
Nanoscale ; 14(28): 10075-10081, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35792030

ABSTRACT

Perovskite materials prepared in the form of solution-processed nanocrystals and used in top-down fabrication techniques are very attractive to develop low-cost and high-quality integrated optoelectronic circuits. Particularly, integrated miniaturized coherent light sources that can be connected to light-guiding structures on a chip are highly desired. To control light propagating on a small footprint with low-loss optical modes, long-range surface plasmon polariton (LRSPP) waveguides are employed. Herein, we demonstrate an on-chip fabricated photonic-plasmonic hybrid system consisting of a perovskite lasing structure coupled to an LRSPP waveguide achieving a low lasing threshold and a propagation length over 100 µm. Preventing perovskite material degradation and the formation of surface roughness of the laser cavity during fabrication is made possible by designing a fabrication technique without any etching step.

6.
ACS Appl Mater Interfaces ; 14(12): 14012-14024, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35297595

ABSTRACT

The surface plasmon resonance (SPR)-based sensor has been widely used for biodetection. One of the attractive roles is the gold nanostructure with Fano resonance. Its sharp resonant profile takes advantage of the high figure of merit (FoM) in high-sensitivity detection. However, it is still difficult to detect small molecules at low concentrations due to the extremely low refractive index changes on the metallic surface. We propose using the coupling of image dipoles of gold nanoparticles (AuNPs) and Fano resonance of periodic capped gold nanoslits (CGNs) for sensitive small-molecule detections. The coupling mechanism was verified by three-dimensional finite-difference time-domain calculations and experiments. AuNPs on CGN form image dimer assemblies and induce image dipole with resonance wavelengths ranging from 730 to 550 nm. The surface plasmon polaritons (SPPs) interact with the image dipole of the AuNP on the CGNs and then scatter out through the periodic gold caps. The experimental results show that the peak intensity of grating resonance is decreased by the effect of image dipole and exhibits the maximum intensity change when the Fano resonance matches the resonance of image dipole. The 50 nm AuNPs can be detected with a surface density of less than one particle/µm2 by using the intensity change as the signal. With the resonant coupling between Fano resonance and image dipole extinction, the oligonucleotide with a molecular weight of 5.5 kDa can be detected at a concentration of 100 fM. The resonant coupling dramatically pushes the sensitivity boundary, and we report the limit of detection (LOD) to be 3 orders of magnitude lower than that of the prism-based SPR. This study provides a promising and efficient method for detecting low concentrations of small molecules such as aptamers, miRNA, mRNA, and peptides.


Subject(s)
Metal Nanoparticles , Nanostructures , Gold/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Oligonucleotides , Surface Plasmon Resonance/methods
7.
ACS Nano ; 16(2): 2224-2232, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35119823

ABSTRACT

Near-zero-index materials and structures, with their extraordinary optical behaviors of phase-free propagation resulting in directional radiation, provide a possible approach for directional coupling and optical logic gates in photonic integrated circuits. However, the radiation from the near-zero-index structures is limited to a short range of a few hundreds of nanometers. A Bloch surface wave (BSW), an electromagnetic surface wave that can be excited at the interface between an all-dielectric multilayer and a dielectric medium with a low-loss optical mode, provides a solution to increase the propagation length. In this work, we present a nanostructured near-zero-index slab integrated on the all-dielectric metal-free BSW platform for long-range surface wave radiation. By employing the long-range directional surface-wave radiation, a directional coupler and optical logic gates based on the BSW near-zero-index slabs are realized. The proposed directional couplers achieve long coupling distances (the electric-field magnitude ratio between the input slab and output slab is 0.22 with a 50 µm coupling distance), which is 2 orders of magnitude longer than that of conventional directional couplers based on evanescent wave coupling. By controlling the interference pattern of the BSW between the slabs, the XOR logic gate is experimentally demonstrated with a significant extinction ratio of 27.9 dB at telecommunications wavelengths. The BSW near-zero-index logic gates and the directional coupler with long-range light propagation provide an approach to the development of photonic integrated circuits and metal-free surface wave-based applications.

8.
Nanoscale ; 13(37): 15830-15836, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34516594

ABSTRACT

Extensive studies on lead halide perovskites have shown that these materials are excellent candidates as gain mediums. Recently, many efforts have been made to incorporate perovskite lasers in integrated optical circuits. Possible solutions would be to utilize standard lithography with an etching/lift-off process or a direct laser etching technique. However, due to the fragile nature of the lead halide perovskites which gives rise to significant material deterioration during the lithography and etching processes, realizing a small-size, low-roughness, and single-mode laser remains a challenge. Here, a lithographic in-mold patterning method realized by nanocrystal concentration control and a multi-step filling-drying process is proposed to demonstrate CsPbBr3 nanocrystals distributed-Bragg-reflector (DBR) waveguide lasers. This method realizes the patterning of the CsPbBr3 nanocrystal laser cavity and DBR grating without lift-off and etching processes, and the smallest fabricated structures are obtained in a few hundred nanometers. The single-mode lasing is demonstrated at room temperature with a threshold of 23.5 µJ cm-2. The smallest full width at half maximum FWHM of the laser output is 0.4 nm. Due to the fabrication process and the DBR laser geometry, the lasers can be fabricated in a compact array, which is important for incorporating perovskite-based lasers in complex optoelectronic circuits.

9.
Biosens Bioelectron ; 191: 113463, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34198171

ABSTRACT

An osmium-coated lensed fiber (OLF) probe combined with a silver-coated black silicon (SBS) substrate was used to generate a dielectrophoretic (DEP) force that traps bacteria and enables Raman signal detection from bacteria. The lensed fiber coated with a 2-nm osmium layer was used as an electrode for the DEP force and also as a lens to excite Raman signals. The black silicon coated with a 150-nm silver layer was used both as the surface-enhanced Raman scattering (SERS) substrate and the counter electrode. The enhanced Raman signal was collected by the same OLF probe and further analyzed with a spectrometer. For Raman measurements, a drop of bacterial suspension was placed between the OLF probe and the SBS substrate. By controlling the frequency of an AC voltage on the OLF probe and SBS substrate, a DEP force at 1 MHz concentrated bacteria on the SBS surface and removed the unbound micro-objects in the solution at 1 kHz. A bacteria concentration of 6 × 104 CFU/mL (colony forming units per mL) could be identified in less than 15 min, using a volume of only 1 µL, by recording the variation of the Raman peak at 740 cm-1.


Subject(s)
Biosensing Techniques , Silicon , Bacteria , Spectrum Analysis, Raman
10.
J Chem Phys ; 154(14): 144503, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33858173

ABSTRACT

Molecular dynamics simulations of water adsorbed in Material Institute Lavoisier MIL-101(Cr) metal-organic frameworks are performed to analyze the kinetic properties of water molecules confined in the framework at 298.15 K and under different vapor pressures and clarify the water adsorption mechanism in MIL-101(Cr). The terahertz frequency-domain spectra (THz-FDS) of water are calculated by applying fast Fourier transform to the configurational data of water molecules. According to the characteristic frequencies in the THz-FDS, the dominant motions of water molecules in MIL-101(Cr) can be categorized into three types: (1) low-frequency translational motion (0-0.5 THz), (2) medium-frequency vibrational motion (2-2.5 THz), and (3) high-frequency vibrational motion (>6 THz). Each type of water motion is confirmed by visualizing the water configuration in MIL-101(Cr). The ratio of the number of water molecules with low-frequency translational motion to the total number of water molecules increases with the increase in vapor pressure. In contrast, that with medium-frequency vibrational motion is found to decrease with vapor pressure, exhibiting a pronounced decrease after water condensation has started in the cavities. That with the high-frequency vibrational motion is almost independent of the vapor pressure. The interactions between different types of water molecules affect the THz-FDS. Furthermore, the self-diffusion coefficient and the velocity auto-correlation function are calculated to clarify the adsorption state of the water confined in MIL-101(Cr). To confirm that the general trend of the THz-FDS does not depend on the water model, the simulations are performed using three water models, namely, rigid SPC/E, flexible SPC/E, and rigid TIP5PEw.

11.
Nanomaterials (Basel) ; 11(2)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572183

ABSTRACT

Oxygen evolution reaction (OER) is the key reaction for water splitting, which is used for hydrogen production. Oxygen vacancy engineering is an effective method to tune the OER performance, but the direct relationship between the concentration of oxygen vacancy and OER activity is not well understood. Herein, a series of NiyCe100-yOx with different concentration of oxygen vacancies were successfully synthesized. The larger concentration of oxygen vacancies in Ni75Ce25Ox and Ni50Ce50Ox result in their lower Tafel slopes, small mass-transfer resistance, and larger electrochemical surface areas of the catalysts, which account for the higher OER activities for these two catalysts. Moreover, with a fixed current density of 10 mA/cm2, the potential remains stable at 1.57 V for more than 100 h, indicating the long-term stability of the Ni75Ce25Ox catalyst.

12.
ACS Appl Bio Mater ; 3(9): 6331-6342, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-35021763

ABSTRACT

Surface plasmon resonances on Ga-doped ZnO (ZnO/Ga) layer surfaces (ZnO-SPRs) have attracted substantial attention as alternative plasmonic materials in the infrared range. We present further enhancement of the detection limits of ZnO-SPRs to monitor biological interactions by introducing thin dielectric layers into ZnO-SPRs, which remarkably modify the electric fields and the corresponding decay lengths on the sensing surfaces. The presence of a high-permittivity dielectric layer of Ga2O3 provides high wavelength sensitivities of the ZnO-SPRs due to the strongly confined electric fields. The superior sensing capabilities of the proposed samples were verified by real-time monitoring of the biological interactions between biotin and streptavidin molecules. Introduction of the high-permittivity dielectric layer into ZnO-SPRs effectively enhances the detection sensitivity and therefore allowed for the observation of biological interactions. This paper provides useful information for the development of optical detection techniques for use in biological fields based on ZnO from the viewpoints of plasmonic applications.

13.
Sensors (Basel) ; 19(22)2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31717912

ABSTRACT

An axicon fiber tip combined with a camera device is developed to sensitively detect refractive indexes in solutions. The transparent axicon tips were made by etching optical fibers through a wet end-etching method at room temperature. When the axicon fiber tip was immersed in various refractive index media, the angular spectrum of the emitted light from the axicon fiber tip was changed. Using a low numerical aperture lens to collect the directly transmitted light, a high intensity sensitivity was achieved when the tip cone angle was about 35 to 40 degrees. We combined the axicon fiber tip with a laser diode and a smartphone into a portable refractometer. The front camera of the smartphone was used to collect the light emitted from the axicon fiber tip. By analyzing the selected area of the captured images, the refractive index can be distinguished for various solutions. The refractive index sensitivity was up to 56,000%/RIU, and the detection limit was 1.79 × 10-5 RIU. By measuring the refractive index change via the axicon fiber tip, the concentration of different mediums can be sensitively detected. The detection limits of the measurement for sucrose solutions, saline solutions, and diluted wine were 8.86 × 10-3 °Bx, 0.12‱, and 0.35%, respectively.

14.
Nanoscale ; 11(37): 17407-17414, 2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31528935

ABSTRACT

Tamm plasmonic (TP) structures, consisting of a metallic film and a distributed Bragg reflector (DBR), can exhibit pronounced light confinement allowing for enhanced absorption in the metallic film at the wavelength of the TP resonance. This wavelength dependent absorption can be converted into an electrical signal through the internal photoemission of energetic hot-electrons from the metallic film. Here, by replacing the metallic film at the top of a TP structure with a hot-electron device in a metal-semiconductor-ITO (M-S-ITO) configuration, for the first time, we experimentally demonstrate a wavelength-selective photoresponse around the telecommunication wavelength of 1550 nm. The M-S-ITO junction is deliberately designed to have a low energy barrier and asymmetrical hot-electron generation, in order to guarantee a measurable net photocurrent even for sub-bandgap incident light with a photon energy of 0.8 eV (1550 nm). Due to the excitation of TPs between the metallic film in the M-S-ITO structure and the underlying DBR, the fabricated TP coupled hot-electron photodetector exhibits a sharp reflectance dip with a bandwidth of 43 nm at a wavelength of 1581 nm. The photoresponse matches the absorptance spectrum, with a maximum value of 8.26 nA mW-1 at the absorptance peak wavelength that decreases by more than 80% when the illumination wavelength is varied by only 52 nm (from 1581 to 1529 nm), thus realizing a high modulation wavelength-selective photodetector. This study demonstrates a high-performance, lithography-free, and wavelength-selective hot-electron near-infrared photodetector using an M-S-ITO-DBR planar structure.

15.
Nano Lett ; 18(12): 7769-7776, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30423249

ABSTRACT

Plasmonic-waveguide lasers, which exhibit subdiffraction limit lasing and light propagation, are promising for the next-generation of nanophotonic devices in computation, communication, and biosensing. Plasmonic lasers supporting waveguide modes are often based on nanowires grown with bottom-up techniques that need to be transferred and aligned for use in optical circuits. Here, we demonstrate a monolithically fabricated ZnO/Al plasmonic-waveguide nanolaser compatible with the fabrication requirements of on-chip circuits. The nanolaser is designed with a plasmonic metal layer on the top of the laser cavity only, providing highly efficient energy transfer between photons, excitons, and plasmons, and achieving lasing in the ultraviolet region up to 330 K with a low threshold intensity (0.20 mJ/cm2 at room temperature). This work demonstrates the realization of a plasmonic-waveguide nanolaser without the need for transfer and positioning steps, which is the key for on-chip integration of nanophotonic devices.

16.
Chem Soc Rev ; 47(13): 4981-5037, 2018 Jul 02.
Article in English | MEDLINE | ID: mdl-29736528

ABSTRACT

Graphene and two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant interest due to their unique properties that cannot be obtained in their bulk counterparts. These atomically thin 2D materials have demonstrated strong light-matter interactions, tunable optical bandgap structures and unique structural and electrical properties, rendering possible the high conversion efficiency of solar energy with a minimal amount of active absorber material. The isolated 2D monolayer can be stacked into arbitrary van der Waals (vdWs) heterostructures without the need to consider lattice matching. Several combinations of 2D/3D and 2D/2D materials have been assembled to create vdWs heterojunctions for photovoltaic (PV) and photoelectrochemical (PEC) energy conversion. However, the complex, less-constrained, and more environmentally vulnerable interface in a vdWs heterojunction is different from that of a conventional, epitaxially grown heterojunction, engendering new challenges for surface and interface engineering. In this review, the physics of band alignment, the chemistry of surface modification and the behavior of photoexcited charge transfer at the interface during PV and PEC processes will be discussed. We will present a survey of the recent progress and challenges of 2D/3D and 2D/2D vdWs heterojunctions, with emphasis on their applicability to PV and PEC devices. Finally, we will discuss emerging issues yet to be explored for 2D materials to achieve high solar energy conversion efficiency and possible strategies to improve their performance.

17.
Nanoscale ; 10(12): 5449-5456, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29493702

ABSTRACT

We present a systematic study on the fabrication, characterization and high temperature surface enhanced Raman spectroscopy (SERS) performance of SiO2 coated silver nanoparticles (Ag@SiO2) on a flat substrate, aiming to obtain a thermally robust SERS substrate for monitoring high temperature reactions. We confirm that a 10-15 nm SiO2 coating provides a structure stability up to 900 °C without significantly sacrificing the enhancement factor, while the uncoated particle cannot retain the SERS effect above 500 °C. The finite difference time domain (FDTD) simulation results supported that the SiO2 coating almost has no influence on the distribution of the electric field but only physically trapped the most enhanced spot inside the coating layer. On this thermally robust substrate, we confirmed that the SERS of horizontally aligned single walled carbon nanotubes is stable at elevated temperatures, and demonstrate an in situ Raman monitoring of the atmosphere of the annealing process of nanodiamonds, in which the interconverting process of C-C bonds is unambiguously observed. We claim that this is a first experimental proof that the high temperature SERS effect can be preserved and applied in a chemical reaction at temperature above 500 °C. This versatile substrate also enables novel opportunities for observing growth, etching, and structure transformation of many 0D and 2D nano-materials.

18.
ACS Appl Mater Interfaces ; 9(23): 19507-19512, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28560876

ABSTRACT

Photoelectrochemical (PEC) water splitting is a promising approach for renewable energy, where the development of efficient photoelectrodes, especially photoanodes for water oxidation is still challenging. In this paper, we report the novel solution-processed microcrystalline Ag3PO4 photoanodes with tunable porosity depending on the reaction time. These porous Ag3PO4 films were grown on large-area (4.5 × 4.5 cm2) silver substrates via an air-exposed and room-temperature immersion reaction. Enhanced light absorption abilities were exhibited by the synthesized Ag3PO4 films with optimized porosity resulted from prolonged reaction times (≥20 h), due to which appreciable water splitting performance was demonstrated when they were utilized as photoanodes. Particularly, the highly porous 20 h Ag3PO4 photoanode presented a photocurrent density of around 4.32 mA/cm2, which is nearly three times higher than that of the nonporous 1 h Ag3PO4 photoanode (1.48 mA/cm2) at 1 V vs Ag/AgCl. Moreover, superior stability of the 20 h Ag3PO4 photoanode has also been confirmed by the 5 h successive PEC water splitting experiment. Therefore, both the scalable and facile fabrication method, and considerable photoactivity and stability of these Ag3PO4 photoanodes together suggest their great potential for efficient solar-to-fuel energy conversion and other PEC applications.

19.
Nanotechnology ; 28(12): 125206, 2017 Mar 24.
Article in English | MEDLINE | ID: mdl-28170345

ABSTRACT

The significant enhancement seen in surface-enhanced Raman scattering (SERS) heavily relies on the ability of plasmonic structures to strongly confine light. Current techniques used to fabricate plasmonic nanostructures have been limited in their reproducibility for bottom-up techniques or their feature size for top-down techniques. Here, we propose a tooth multilayer structure that can be fabricated by using physical vapor deposition and selective wet etching, achieving extremely small feature sizes and high reproducibility. A multilayer structure composed of two alternating materials whose thicknesses can be controlled accurately in the nanometer range is deposited on a flat substrate using ion-beam sputtering. Subsequent selective wet etching is used to form nanogaps in one of the materials constituting the multilayer, with the depth of the nanogaps being controlled by the wet etching time. Combining both techniques can allow the nanogap dimensions to be controlled at sub 10 nm length scale, thus achieving a tooth multilayer structure with high enhancement and tunability of the resonance mode over a broad range, ideal for SERS applications.

20.
J Colloid Interface Sci ; 490: 23-28, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-27870955

ABSTRACT

Structurally well-defined assemblies of silver nanoparticles, including the dendritic nano-flowers (NFs), planar nano-spheres (NSs) and nano-dendrites (NDs) were obtained by a surfactant-free and ultrafast (≈15min) self-assembly process on as-purchased carbon-coated copper TEM grids. The silver nano-assemblies, especially the NFs modified TEM grids, when serving as surface-enhanced Raman spectroscopy (SERS) substrates for detecting melamine molecules, demonstrated a long-lived limit of detection (LOD) of as low as 10-11M, suggesting the potential of these silver-assemblies modified carbon-coated copper grids as novel potable and cost-effective SERS substrates for trace detection toward various food contaminants like melamine.


Subject(s)
Carbon/chemistry , Copper/chemistry , Food Contamination/analysis , Nanostructures/chemistry , Silver/chemistry , Spectrum Analysis, Raman/methods , Triazines/analysis , Animals , Limit of Detection , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Milk/chemistry , Nanostructures/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...