Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 7(1): 342-50, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26586477

ABSTRACT

One of the main areas of behavioural neuroscience is forecasting the human behaviour. Epilepsy is a central nervous system disorder in which nerve cell activity in the brain becomes disrupted, causing seizures or periods of unusual behaviour, sensations and sometimes loss of consciousness. An estimated 5% of the world population has epileptic seizure but there is not any method to cure it. More than 30% of people with epilepsy cannot control seizure. Epileptic seizure prediction, refers to forecasting the occurrence of epileptic seizures, is one of the most important but challenging problems in biomedical sciences, across the world. In this research we propose a new methodology which is based on studying the EEG signals using two measures, the Hurst exponent and fractal dimension. In order to validate the proposed method, it is applied to epileptic EEG signals of patients by computing the Hurst exponent and fractal dimension, and then the results are validated versus the reference data. The results of these analyses show that we are able to forecast the onset of a seizure on average of 25.76 seconds before the time of occurrence.


Subject(s)
Algorithms , Electroencephalography/methods , Epilepsy/physiopathology , Seizures/physiopathology , Signal Processing, Computer-Assisted , Adult , Epilepsy/diagnosis , Female , Fractals , Humans , Male , Prognosis , Reproducibility of Results , Seizures/diagnosis , Sensitivity and Specificity , Time Factors , Young Adult
2.
Oncotarget ; 6(40): 42623-31, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26497203

ABSTRACT

Skin cancer is a common, low-grade cancerous (malignant) growth of the skin. It starts from cells that begin as normal skin cells and transform into those with the potential to reproduce in an out-of-control manner. Cancer develops when DNA, the molecule found in cells that encodes genetic information, becomes damaged and the body cannot repair the damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to diagnose the skin cancer, first DNA walk plots of genomes of patients with skin cancer were generated. Then, the data so obtained was checked for complexity by computing the fractal dimension. Furthermore, the Hurst exponent has been employed in order to study the correlation of damaged DNA. By analysing different samples it has been found that the damaged DNA sequences are exhibiting higher degree of complexity and less correlation compared to normal DNA sequences. This investigation confirms that this method can be used for diagnosis of skin cancer. The method discussed in this research is useful not only for diagnosis of skin cancer but can be applied for diagnosis and growth analysis of different types of cancers.


Subject(s)
Algorithms , DNA Damage/genetics , Models, Theoretical , Skin Neoplasms/diagnosis , Skin Neoplasms/genetics , Fractals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...