Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotherapeutics ; 18(1): 297-308, 2021 01.
Article in English | MEDLINE | ID: mdl-33021723

ABSTRACT

In amyotrophic lateral sclerosis (ALS), motor neuron degeneration occurs simultaneously with systemic metabolic dysfunction and neuro-inflammation. The fibroblast growth factor 21 (FGF21) plays an important role in the regulation of both phenomena and is a major hormone of energetic homeostasis. In this study, we aimed to determine the relevance of FGF21 pathway stimulation in a male mouse model of ALS (mutated SOD1-G93A mice) by using a pharmacological agonist of FGF21, R1Mab1. Mice (SOD1-WT and mutant SOD1-G93A) were treated with R1Mab1 or vehicle. Longitudinal data about clinical status (motor function, body weight) and biological parameters (including hormonal, immunological, and metabolomics profiles) were collected from the first symptoms to euthanasia at week 20. Multivariate models were performed to identify the main parameters associated with R1Mab1 treatment and to link them with clinical status, and metabolic pathways involving the discriminant metabolites were also determined. A beneficial clinical effect of R1Mab1 was revealed on slow rotarod (p = 0.032), despite a significant decrease in body weight of ALS mice (p < 0.001). We observed a decrease in serum TNF-α, MCP-1, and insulin levels (p = 0.0059, p = 0.003, and p = 0.01, respectively). At 16 weeks, metabolomics analyses revealed a clear discrimination (CV-ANOVA = 0.0086) according to the treatment and the most discriminant pathways, including sphingolipid metabolism, butanoate metabolism, pantothenate and CoA biosynthesis, and the metabolism of amino acids like tyrosine, arginine, proline, glycine, serine, alanine, aspartate, and glutamate. Mice treated with R1Mab1 had mildly higher performance on slow rotarod despite a decrease on body weight and could be linked with the anti-inflammatory effect of R1Mab1. These results indicate that FGF21 pathway is an interesting target in ALS, with a slight improvement in motor function combined with metabolic and anti-inflammatory effects.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Fibroblast Growth Factors/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Animals , Antibodies, Monoclonal/therapeutic use , Chemokine CCL2/blood , Disease Models, Animal , Fibroblast Growth Factors/immunology , Fibroblast Growth Factors/physiology , Interleukin-6/blood , Leptin/blood , Male , Metabolomics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Resistin/blood , Rotarod Performance Test , Signal Transduction , Transcriptome , Tumor Necrosis Factor-alpha/blood
2.
J Neurol Sci ; 380: 124-127, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28870551

ABSTRACT

INTRODUCTION: Converging evidence highlights that lipid metabolism plays a key role in ALS pathophysiology. Dyslipidemia has been described in ALS patients and may be protective but peripheral lipoprotein subclasses have never been studied. MATERIAL AND METHODS: We collected sera from 30 ALS patients and 30 gender and age-matched controls. We analyzed 11 distinct lipoprotein subclasses by linear polyacrylamide gel electrophoresis (Lipoprint, Quantimetrix Corporation, USA). We also measured lipoprotein (a), apolipoprotein B, and apolipoprotein E levels. RESULTS: ALS patients had significant higher total cholesterol, HDL-cholesterol, and LDL-cholesterol levels than controls (p<0.0001, p=0.0007, and p=0.0065, respectively). The LDL-1 subfraction concentration was higher (1.03±0.41 vs. 0.71±0.28mmol/L; p=0.0006) and the IDL-B subfraction lower (6.5±2% vs. 8.0±2%; p=0.001) in ALS patients than controls. DISCUSSION: Our preliminary work confirmed the association between ALS and dyslipidemia. The low IDL-B levels may explain the hepatic steatosis frequently reported in ALS. The high levels of the cholesterol-rich LDL-1 subfraction is consistent with previously reported hypercholesterolemia. CONCLUSION: This study describes, for the first time, the distribution of serum lipoproteins in ALS patients, with low IDL-B and high LDL-1 subfraction level.


Subject(s)
Amyotrophic Lateral Sclerosis/blood , Lipoproteins, IDL/blood , Lipoproteins, LDL/blood , Aged , Biomarkers/blood , Cohort Studies , Dyslipidemias/blood , Female , Humans , Lipoproteins, HDL/blood , Male , Preliminary Data
SELECTION OF CITATIONS
SEARCH DETAIL
...