Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(11): 113305, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461557

ABSTRACT

Superconducting radio-frequency (SRF) cavities are one of the fundamental building blocks of modern particle accelerators. To achieve the highest quality factors (1010-1011), SRF cavities are operated at liquid helium temperatures. Magnetic flux trapped on the surface of SRF cavities during cool-down below the critical temperature is one of the leading sources of residual RF losses. Instruments capable of detecting the distribution of trapped flux on the cavity surface are in high demand in order to better understand its relation to the cavity material, surface treatments and environmental conditions. We have designed, developed, and commissioned two high-resolution diagnostic tools to measure the distribution of trapped flux at the surface of SRF cavities. One is a magnetic field scanning system, which uses cryogenic Hall probes and anisotropic magnetoresistance sensors that fit the contour of a 1.3 GHz cavity. This setup has a spatial resolution of ∼13µm in the azimuthal direction and ∼1 cm along the cavity contour. The second setup is a stationary, combined magnetic and temperature mapping system, which uses anisotropic magnetoresistance sensors and carbon resistor temperature sensors, covering the surface of a 3 GHz SRF cavity. This system has a spatial resolution of 5 mm close to the iris and 11 mm at the equator. Initial results show a non-uniform distribution of trapped flux on the cavities' surfaces, dependent on the magnitude of the applied magnetic field during field-cooling below the critical temperature.

2.
Rev Sci Instrum ; 93(7): 073303, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35922315

ABSTRACT

The 300 kV DC high voltage photogun at Jefferson Lab was redesigned to deliver electron beams with a much higher bunch charge and improved beam properties. The original design provided only a modest longitudinal electric field (Ez) at the photocathode, which limited the achievable extracted bunch charge. To reach the bunch charge goal of approximately few nC with 75 ps full-width at half-maximum Gaussian laser pulse width, the existing DC high voltage photogun electrodes and anode-cathode gap were modified to increase Ez at the photocathode. In addition, the anode aperture was spatially shifted with respect to the beamline longitudinal axis to minimize the beam deflection introduced by the non-symmetric nature of the inverted insulator photogun design. We present the electrostatic design of the original photogun and the modified photogun and beam dynamics simulations that predict vastly improved performance. We also quantify the impact of the photocathode recess on beam quality, where recess describes the actual location of the photocathode inside the photogun cathode electrode relative to the intended location. A photocathode unintentionally recessed/misplaced by sub-millimeter distance can significantly impact the downstream beam size.

3.
Rev Sci Instrum ; 93(5): 055104, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35649811

ABSTRACT

Superconducting Radio Frequency (SRF) cavities used in particle accelerators are typically formed from or coated with superconducting materials. Currently, high purity niobium is the material of choice for SRF cavities that have been optimized to operate near their theoretical field limits. This brings about the need for significant R & D efforts to develop next generation superconducting materials that could outperform Nb and keep up with the demands of new accelerator facilities. To achieve high quality factors and accelerating gradients, the cavity material should be able to remain in the superconducting Meissner state under a high RF magnetic field without penetration of quantized magnetic vortices through the cavity wall. Therefore, the magnetic field at which vortices penetrate a superconductor is one of the key parameters of merit of SRF cavities. Techniques to measure the onset of magnetic field penetration on thin film samples need to be developed to mitigate the issues with the conventional magnetometry measurements that are strongly influenced by the film orientation and shape and edge effects. In this work, we report the development of an experimental setup to measure the field of full flux penetration through films and multi-layered superconductors. Our system combines a small superconducting solenoid that can generate a magnetic field of up to 500 mT at the sample surface and three Hall probes to detect the full flux penetration through the superconductor. This setup can be used to study alternative materials that could potentially outperform niobium, as well as superconductor-insulator-superconductor (SIS) multilayer coatings on niobium.

4.
Rev Sci Instrum ; 92(10): 104705, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34717418

ABSTRACT

Superconducting radio frequency (SRF) cavities are fundamental building blocks of modern particle accelerators. They operate at liquid helium temperatures (2-4 K) to achieve very high quality factors (1010-1011). Trapping of magnetic flux within the superconductor is a significant contribution to the residual RF losses, which limit the achievable quality factor. Suitable diagnostic tools are in high demand to understand the mechanisms of flux trapping in technical superconductors, and the fundamental components of such diagnostic tools are magnetic field sensors. We have studied the performance of commercially available Hall probes, anisotropic magnetoresistive sensors, and flux-gate magnetometers with respect to their sensitivity and capability to detect localized, low magnetic flux amplitudes, of the order of a few tens of magnetic flux quantum at liquid helium temperatures. Although Hall probes have the lowest magnetic field sensitivity (∼96 nV/µT at 2 K), their physical dimensions are such that they have the ability to detect the lowest number of trapped vortices among the three types of sensors. Hall probes and anisotropic magnetoresistive sensors have been selected to be used in a setup to map regions of trapped flux on the surface of a single-cell SRF cavity.

SELECTION OF CITATIONS
SEARCH DETAIL
...