Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 91: 404-417, 2021 01.
Article in English | MEDLINE | ID: mdl-33190798

ABSTRACT

Microglia, the resident immune cells of the brain, have recently emerged as key players in Alzheimer Disease (AD) pathogenesis, but their roles in AD remain largely elusive and require further investigation. Microglia functions are readily altered when isolated from their brain environment, and microglia reporter mice thus represent valuable tools to study the contribution of these cells to neurodegenerative diseases such as AD. The CX3CR1+/eGFP mice is one of the most popular microglia reporter mice, and has been used in numerous studies to investigate in vivo microglial functions, including in the context of AD research. However, until now, the impact of CX3CR1 haplodeficiency on the typical features of Alzheimer Disease has not been studied in depth. To fill this gap, we generated APPswe/PSEN1dE9:CX3CR1+/eGFP mice and analyzed these mice for Alzheimer's like pathology and neuroinflammation hallmarks. More specifically, using robust multifactorial statistical and multivariate analyses, we investigated the impact of CX3CR1 deficiency in both males and females, at three typical stages of the pathology progression: at early stage when Amyloid-ß (Aß) deposition just starts, at intermediate stage during Aß accumulation phase and at more advanced stages when Aß plaque number stabilizes. We found that CX3CR1 haplodeficiency had little impact on the progression of the pathology in the APPswe/PSEN1dE9 model and demonstrated that the APPswe/PSEN1dE9:CX3CR1+/eGFP line is a relevant and useful model to study the role of microglia in Alzheimer Disease. In addition, although Aß plaques density is higher in females compared to age-matched males, we show that their glial reaction, inflammation status and memory deficits are not different.


Subject(s)
Alzheimer Disease , CX3C Chemokine Receptor 1 , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , CX3C Chemokine Receptor 1/genetics , Disease Models, Animal , Disease Progression , Female , Male , Mice , Mice, Transgenic , Microglia/metabolism , Plaque, Amyloid
2.
Neurology ; 94(13): e1378-e1385, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32123049

ABSTRACT

OBJECTIVE: To assess nonparoxysmal movement disorders in ATP1A3 mutation-positive patients with alternating hemiplegia of childhood (AHC). METHODS: Twenty-eight patients underwent neurologic examination with particular focus on movement phenomenology by a specialist in movement disorders. Video recordings were reviewed by another movement disorders specialist and data were correlated with patients' characteristics. RESULTS: Ten patients were diagnosed with chorea, 16 with dystonia (nonparoxysmal), 4 with myoclonus, and 2 with ataxia. Nine patients had more than one movement disorder and 8 patients had none. The degree of movement disorder was moderate to severe in 12/28 patients. At inclusion, dystonic patients (n = 16) were older (p = 0.007) than nondystonic patients. Moreover, patients (n = 18) with dystonia or chorea, or both, had earlier disease onset (p = 0.042) and more severe neurologic impairment (p = 0.012), but this did not correlate with genotype. All patients presented with hypotonia, which was characterized as moderate or severe in 16/28. Patients with dystonia or chorea (n = 18) had more pronounced hypotonia (p = 0.011). Bradykinesia (n = 16) was associated with an early age at assessment (p < 0.01). Significant dysarthria was diagnosed in 11/25 cases. A history of acute neurologic deterioration and further regression of motor function, typically after a stressful event, was reported in 7 patients. CONCLUSIONS: Despite the relatively limited number of patients and the cross-sectional nature of the study, this detailed categorization of movement disorders in patients with AHC offers valuable insight into their precise characterization. Further longitudinal studies on this topic are needed.


Subject(s)
Hemiplegia/complications , Movement Disorders/genetics , Adolescent , Adult , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Male , Mutation , Sodium-Potassium-Exchanging ATPase/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...