Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 325: 138323, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36906005

ABSTRACT

The urgent issues related to the catalytic processes and energy applications have accelerated the development of hybrid and smart materials. MXenes are a new family of atomic layered nanostructured materials that require considerable research. Tailorable morphologies, strong electrical conductivity, great chemical stability, large surface-to-volume ratios, tunable structures, among others are some significant characteristics that make MXenes appropriate for various electrochemical reactions, including dry reforming of methane, hydrogen evolution reaction, methanol oxidation reaction, sulfur reduction reaction, Suzuki-Miyaura coupling reaction, water-gas shift reaction, and so forth. MXenes, on the other hand, have a fundamental drawback of agglomeration, as well as poor long-term recyclability and stability. One possibility for overcoming the restrictions is the fusion of nanosheets or nanoparticles with MXenes. Herein, the relevant literature on the synthesis, catalytic stability and reusability, and applications of several MXene-based nanocatalysts are deliberated including the merits and cons of the newer MXene-based catalysts.


Subject(s)
Nanoparticles , Nanostructures , Catalysis , Electric Conductivity
2.
Sci Rep ; 13(1): 379, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36611044

ABSTRACT

A carbon-fiber (Cf) doped TiB2-SiC composite was prepared and investigated to determine its densification behavior, micro/nanostructural properties, and mechanical characteristics. TiB2-25 vol% SiC-2 wt% Cf was prepared at 40 MPa and 1800 °C for 7 min using the pulsed electric-current sintering technique, and a relative density of 98.5% was realized. The as-sintered composite was characterized using advanced techniques, e.g., X-ray diffractometry, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, field-emission electron probe micro-analysis, and nanoindentation. The Cf additive could remove the surface oxide layers from the TiB2 and SiC domains, thus transforming them into TiB2 and SiC. According to micro/nanostructural studies, Cf could not retain its initial structure and was eventually converted into graphite nanosheets. In addition, the prepared composite was examined using the nanoindentation technique, and the following results were obtained for the calculated hardness, elastic modulus, and stiffness values: TiB2 > SiC > TiB2/SiC interface.

3.
Sci Rep ; 12(1): 13765, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35962129

ABSTRACT

This study assessed the sinterability and microstructure of ZrB2-SiC-TaN and ZrB2-TaN ceramics. Spark plasma sintering at 2000 °C and 30 MPa for 5 min produced both ceramics. The relative density of ZrB2 ceramic containing TaN was 95.3%; the addition of SiC increased this value to 98.1%. SiC's contribution to the elimination of ZrB2 surface oxides was the primary factor in the advancement of densification. The in situ formation of hexagonal boron nitride at the interface of TaN and ZrB2 was confirmed by high-resolution transmission electron microscopy, field emission-electron probe microanalyzer, X-ray diffractometry, and field emission scanning electron microscopy. Moreover, the in situ graphite might be produced as a byproduct of the SiC-SiO2 process, hence boosting the reduction of oxide compounds in the ternary system. The SiC compound had the highest hardness (29 ± 3 GPa), while the ZrB2/TaN interface exhibited the greatest values of elastic modulus (473 ± 26 GPa) and stiffness (0.76 ± 0.13 mN/nm).

4.
J Colloid Interface Sci ; 587: 538-549, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33223237

ABSTRACT

Climate change, global warming, and population growth have led researchers to use eco-sociable procedures for the N2 reduction reaction. It has discovered that N2 molecule can be transformed into NH3 in ambient circumstances with nanocomposites upon visible irradiation. In this research paper, a new visible-light-driven photocatalyst was constructed, with various weight percents of FeOCl particles (10, 20, 30, and 40%) that have adhered on NS-CN. Subsequently, multiple features of the nanocomposites were assayed in detail. The results illustrated that the NS-CN/FeOCl (20%) system has remarkable photoactivity in the NH4+ production reaction in comparison with the NS-CN and CN, which showed 2.5 and 8.6 higher activity, respectively. The durability of NS-CN/FeOCl (20%) system, as a substantial factor, was assayed for 5 recycles. Moreover, the effect of electron quenchers, pH of media, and solvent was studied. At last, a feasible Z-scheme mechanism for the remarkable improvement of N2 fixation efficiency was offered.

SELECTION OF CITATIONS
SEARCH DETAIL
...