Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 13(7)2022 06 22.
Article in English | MEDLINE | ID: mdl-35885902

ABSTRACT

(1) Background: Cold stress affects growth and development in plants and is a major environmental factor that decreases productivity. Over the past two decades, the advent of next generation sequencing (NGS) technologies has opened new opportunities to understand the molecular bases of stress resistance by enabling the detection of weakly expressed transcripts and the identification of regulatory RNAs of gene expression, including microRNAs (miRNAs). (2) Methods: In this study, we performed time series sRNA and mRNA sequencing experiments on two pea (Pisum sativum L., Ps) lines, Champagne frost-tolerant and Térèse frost-sensitive, during a low temperature treatment versus a control condition. (3) Results: An integrative analysis led to the identification of 136 miRNAs and a regulation network composed of 39 miRNA/mRNA target pairs with discordant expression patterns. (4) Conclusions: Our findings indicate that the cold response in pea involves 11 miRNA families as well as their target genes related to antioxidative and multi-stress defense mechanisms and cell wall biosynthesis.


Subject(s)
MicroRNAs , Pisum sativum , Cold-Shock Response , Gene Expression Regulation, Plant/genetics , MicroRNAs/metabolism , Pisum sativum/genetics , Pisum sativum/metabolism , RNA, Messenger/genetics , RNA-Seq
2.
BMC Genomics ; 21(1): 536, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32753054

ABSTRACT

BACKGROUND: Frost is a limiting abiotic stress for the winter pea crop (Pisum sativum L.) and identifying the genetic determinants of frost tolerance is a major issue to breed varieties for cold northern areas. Quantitative trait loci (QTLs) have previously been detected from bi-parental mapping populations, giving an overview of the genome regions governing this trait. The recent development of high-throughput genotyping tools for pea brings the opportunity to undertake genetic association studies in order to capture a higher allelic diversity within large collections of genetic resources as well as to refine the localization of the causal polymorphisms thanks to the high marker density. In this study, a genome-wide association study (GWAS) was performed using a set of 365 pea accessions. Phenotyping was carried out by scoring frost damages in the field and in controlled conditions. The association mapping collection was also genotyped using an Illumina Infinium® BeadChip, which allowed to collect data for 11,366 single nucleotide polymorphism (SNP) markers. RESULTS: GWAS identified 62 SNPs significantly associated with frost tolerance and distributed over six of the seven pea linkage groups (LGs). These results confirmed 3 QTLs that were already mapped in multiple environments on LG III, V and VI with bi-parental populations. They also allowed to identify one locus, on LG II, which has not been detected yet and two loci, on LGs I and VII, which have formerly been detected in only one environment. Fifty candidate genes corresponding to annotated significant SNPs, or SNPs in strong linkage disequilibrium with the formers, were found to underlie the frost damage (FD)-related loci detected by GWAS. Additionally, the analyses allowed to define favorable haplotypes of markers for the FD-related loci and their corresponding accessions within the association mapping collection. CONCLUSIONS: This study led to identify FD-related loci as well as corresponding favorable haplotypes of markers and representative pea accessions that might to be used in winter pea breeding programs. Among the candidate genes highlighted at the identified FD-related loci, the results also encourage further attention to the presence of C-repeat Binding Factors (CBF) as potential genetic determinants of the frost tolerance locus on LG VI.


Subject(s)
Genome-Wide Association Study , Pisum sativum , Alleles , Chromosome Mapping , Linkage Disequilibrium , Pisum sativum/genetics , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide
3.
Plants (Basel) ; 8(8)2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31443248

ABSTRACT

Low temperature stress affects growth and development in pea (Pisum sativum L.) and decreases yield. In this study, RNA sequencing time series analyses performed on lines, Champagne frost-tolerant and Térèse frost-sensitive, during a low temperature treatment versus a control condition, led us to identify 4981 differentially expressed genes. Thanks to our experimental design and statistical analyses, we were able to classify these genes into three sets. The first one was composed of 2487 genes that could be related to the constitutive differences between the two lines and were not regulated during cold treatment. The second gathered 1403 genes that could be related to the chilling response. The third set contained 1091 genes, including genes that could be related to freezing tolerance. The identification of differentially expressed genes related to cold, oxidative stress, and dehydration responses, including some transcription factors and kinases, confirmed the soundness of our analyses. In addition, we identified about one hundred genes, whose expression has not yet been linked to cold stress. Overall, our findings showed that both lines have different characteristics for their cold response (chilling response and/or freezing tolerance), as more than 90% of differentially expressed genes were specific to each of them.

4.
BMC Genomics ; 14: 814, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24261852

ABSTRACT

BACKGROUND: Freezing provokes severe yield losses to different fall-sown annual legumes. Understanding the molecular bases of freezing tolerance is of great interest for breeding programs. Medicago truncatula Gaertn. is an annual temperate forage legume that has been chosen as a model species for agronomically and economically important legume crops. The present study aimed to identify positional candidate genes for a major freezing tolerance quantitative trait locus that was previously mapped to M. truncatula chromosome 6 (Mt-FTQTL6) using the LR3 population derived from a cross between the freezing-tolerant accession F83005-5 and the freezing-sensitive accession DZA045-5. RESULTS: The confidence interval of Mt-FTQTL6 was narrowed down to the region comprised between markers MTIC153 and NT6054 using recombinant F7 and F8 lines. A bacterial-artificial chromosome (BAC) clone contig map was constructed in an attempt to close the residual assembly gap existing therein. Twenty positional candidate genes including twelve C-repeat binding factor (CBF)/dehydration-responsive element binding factor 1 (DREB1) genes were identified from BAC-derived sequences and whole-genome shotgun sequences (WGS). CBF/DREB1 genes are organized in a tandem array within an approximately 296-Kb region. Eleven CBF/DREB1 genes were isolated and sequenced from F83005-5 and DZA045-5 which revealed high polymorphism among these accessions. Unique features characterizing CBF/DREB1 genes from M. truncatula, such as alternative splicing and large tandem duplication, are elucidated for the first time. CONCLUSIONS: Overall, twenty genes were identified as potential candidates to explain Mt-FTQTL6 effect. Their future functional characterization will uncover the gene(s) involved in freezing tolerance difference observed between F83005-5 and DZA045-5. Knowledge transfer for breeding improvement of crop legumes is expected. Furthermore, CBF/DREB1 related data will certainly have a large impact on research studies targeting this group of transcriptional activators in M. truncatula and other legume species.


Subject(s)
Arabidopsis Proteins/genetics , Freezing , Medicago truncatula/genetics , Transcription Factors/genetics , Acclimatization/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/physiology , Base Sequence , Chromosomes, Plant/genetics , Dehydration , Gene Expression Regulation, Plant , Medicago truncatula/growth & development , Phenotype , Quantitative Trait Loci/genetics , Transcription Factors/physiology
5.
Theor Appl Genet ; 126(9): 2353-66, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23778689

ABSTRACT

Freezing is a major environmental limitation to crop productivity for a number of species including legumes. We investigated the genetic determinism of freezing tolerance in the model legume Medicago truncatula Gaertn (M. truncatula). After having observed a large variation for freezing tolerance among 15 M. truncatula accessions, the progeny of a F6 recombinant inbred line population, derived from a cross between two accessions, was acclimated to low above-freezing temperatures and assessed for: (a) number of leaves (NOL), leaf area (LA), chlorophyll content index (CCI), shoot and root dry weights (SDW and RDW) at the end of the acclimation period and (b) visual freezing damage (FD) during the freezing treatment and 2 weeks after regrowth and foliar electrolyte leakage (EL) 2 weeks after regrowth. Consistent QTL positions with additive effects for FD were found on LG1, LG4 and LG6, the latter being the most explanatory (R (2) ≈ 40 %). QTL for NOL, QTL for EL, NOL and RDW, and QTL for EL and CCI colocalized with FD QTL on LG1, LG4 and LG6, respectively. Favorable alleles for these additive effects were brought by the same parent suggesting that this accession contributes to superior freezing tolerance by affecting plants' capacity to maintain growth at low above-freezing temperatures. No epistatic effects were found between FD QTL, but for each of the studied traits, 3-6 epistatic effects were detected between loci not detected directly as QTL. These results open the way to the assessment of syntenic relationships between QTL for frost tolerance in M. truncatula and cultivated legume species.


Subject(s)
Chromosome Mapping/methods , Freezing , Genetic Variation , Medicago truncatula/genetics , Quantitative Trait Loci , Acclimatization/genetics , Chlorophyll/analysis , Epistasis, Genetic , Genes, Plant , Genetic Linkage , Germination , Medicago truncatula/growth & development , Phenotype , Photoperiod , Plant Roots/genetics
6.
J Plant Physiol ; 170(13): 1148-57, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23632303

ABSTRACT

Cold stress affects plant growth and development. In order to better understand the responses to cold (chilling or freezing tolerance), we used two contrasted pea lines. Following a chilling period, the Champagne line becomes tolerant to frost whereas the Terese line remains sensitive. Four suppression subtractive hybridisation libraries were obtained using mRNAs isolated from pea genotypes Champagne and Terese. Using quantitative polymerase chain reaction (qPCR) performed on 159 genes, 43 and 54 genes were identified as differentially expressed at the initial time point and during the time course study, respectively. Molecular markers were developed from the differentially expressed genes and were genotyped on a population of 164 RILs derived from a cross between Champagne and Terese. We identified 5 candidate genes colocalizing with 3 different frost damage quantitative trait loci (QTL) intervals and a protein quantity locus (PQL) rich region previously reported. This investigation revealed the role of constitutive differences between both genotypes in the cold responses, in particular with genes related to glycine degradation pathway that could confer to Champagne a better frost tolerance. We showed that freezing tolerance involves a decrease of expression of genes related to photosynthesis and the expression of a gene involved in the production of cysteine and methionine that could act as cryoprotectant molecules. Although it remains to be confirmed, this study could also reveal the involvement of the jasmonate pathway in the cold responses, since we observed that two genes related to this pathway were mapped in a frost damage QTL interval and in a PQL rich region interval, respectively.


Subject(s)
Cold-Shock Response , Gene Expression Regulation, Plant , Pisum sativum/physiology , Expressed Sequence Tags/chemistry , Expressed Sequence Tags/metabolism , Gene Library , Genes, Plant , Genotype , Molecular Sequence Data , Pisum sativum/chemistry , Pisum sativum/genetics , Polymerase Chain Reaction , Quantitative Trait Loci , Sequence Analysis, DNA
7.
J Proteomics ; 80: 145-59, 2013 Mar 27.
Article in English | MEDLINE | ID: mdl-23318888

ABSTRACT

Pea (Pisum sativum L.) productivity is linked to its ability to cope with abiotic stresses such as low temperatures during fall and winter. In this study, we investigate the chloroplast-related changes occurring during pea cold acclimation, in order to further lead to genetic improvement of its field performance. Champagne and Térèse, two pea lines with different acclimation capabilities, were studied by physiological measurements, sub-cellular fractionation followed by relative protein quantification and two-dimensional DIGE. The chilling tolerance might be related to an increase in protein related to soluble sugar synthesis, antioxidant potential, regulation of mRNA transcription and translation through the chloroplast. Freezing tolerance, only observed in Champagne, seems to rely on a higher inherent photosynthetic potential at the beginning of the cold exposure, combined with an early ability to start metabolic processes aimed at maintaining the photosynthetic capacity, optimizing the stoichiometry of the photosystems and inducing dynamic changes in carbohydrate and protein synthesis and/or turnover.


Subject(s)
Acclimatization , Chloroplasts/chemistry , Cold Temperature , Pisum sativum/physiology , Biomass , Carbon/chemistry , Chlorophyll/chemistry , Chloroplasts/genetics , Electron Transport , Electrophoresis, Gel, Two-Dimensional , Freezing , Gene Expression Regulation, Plant , Genotype , Nitrogen/chemistry , Oxidative Stress , Pisum sativum/metabolism , Photochemistry , Photosynthesis , Photosystem II Protein Complex , Plant Proteins/metabolism , Proteome , Proteomics , RNA, Messenger/metabolism , Signal Transduction , Subcellular Fractions
8.
Plant Sci ; 180(1): 86-98, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21421351

ABSTRACT

Two pea lines (Pisum sativum L.) with contrasted behaviours towards chilling and subsequent frost were studied by a proteomic approach to better understand cold acclimation. Following a chilling period, the Champagne line becomes tolerant to frost whereas Terese remains sensitive. Variance analysis allowed to select 260 statistically variable spots with 68 identified proteins (35 in leaves, 18 in stems, and 15 in roots). These proteins were shared out in proteins related to chilling response or cold acclimation. The better adaptation of Champagne to chilling might be related to a higher content in proteins involved in photosynthesis and in defence mechanisms. Moreover Champagne might prevent freezing damage particularly thanks to a higher constitutive expression of housekeeping proteins related to Terese. After three days of subsequent frost, proteomes of previously chilled plants also showed significant differences compared to unchilled plants. Out of 112 statistically variable spots (44 in leaves, 38 in stems, and 30 in roots), 32 proteins were identified. These proteins were related to frost response or frost resistance. It seems that Champagne could resist to frost with the reorientation of the energy metabolism.


Subject(s)
Cold Temperature , Pisum sativum/metabolism , Plant Leaves/metabolism , Proteomics/methods , Gene Expression Regulation, Plant , Pisum sativum/genetics , Plant Leaves/genetics , Proteome/genetics , Proteome/metabolism
9.
Theor Appl Genet ; 118(8): 1561-71, 2009 May.
Article in English | MEDLINE | ID: mdl-19322559

ABSTRACT

To increase yield in pea (Pisum sativum L.), autumn sowing would be preferable. Hence, frost tolerance of pea became a major trait of interest for breeders. In order to better understand the cold acclimation in pea, Champagne a frost tolerant line and Terese, a frost sensitive line, and their recombinant inbred lines (RIL) were studied. RIL frost tolerance was evaluated by a frost damage scale under field as well as controlled conditions. A quantitative trait loci (QTL) approach was used to identify chromosomal regions linked to frost tolerance. The detected QTL explained from 6.5 to 46.5% of the phenotypic variance. Amongst them, those located on linkage groups 5 and 6 were consistent with over all experiments, in field as well as in controlled environments. In order to improve the understanding of the frost tolerance mechanisms, several cold acclimation key characters such as concentration of sugars, electrolyte leakage, osmotic pressure, and activity of RuBisCO were assessed. Some of these physiological QTL colocalised with QTL for frost damage, in particular two raffinose QTL on LG5 and LG6 and one RuBisCO activity QTL on LG6, explaining 8.8 to 27.0% of the phenotypic variance. In addition, protein quantitative loci were mapped; some of them colocalised with frost damage and physiological QTL on LG5 and LG6, explaining 16.0-43.6% of the phenotypic variance. Raffinose metabolism and RuBisCO activity and its effect on photosynthesis might play a major role in cold acclimation of pea.


Subject(s)
Adaptation, Physiological/genetics , Carbohydrates/genetics , Crops, Agricultural/genetics , Pisum sativum , Quantitative Trait Loci , Alleles , Chromosome Mapping , Chromosomes, Plant , Cold Temperature , Crosses, Genetic , Environment , Pisum sativum/genetics , Pisum sativum/growth & development , Pisum sativum/physiology , Phenotype , Plant Proteins/genetics , Seasons , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...