Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25314438

ABSTRACT

We measure experimentally the penetration depth d of spherical particles into a water-saturated granular medium made of much smaller sand-sized grains. We vary the density, size R, and velocity U of the impacting spheres, and the size δ of the grains in the granular medium. We consider velocities between 7 and 107 m/s, a range not previously addressed, but relevant for impacts produced by volcanic eruptions. We find that d∝R(1/3)δ(1/3)U(2/3). The scaling with velocity is similar to that identified in previous, low-velocity collisions, but it also depends on the size of the grains in the granular medium. We develop a model, consistent with the observed scaling, in which the energy dissipation is dominated by the work required to rearrange grains along a network of force chains in the granular medium.


Subject(s)
Models, Theoretical , Motion , Water , Particle Size , Thermodynamics
2.
Phys Rev Lett ; 108(12): 122502, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22540577

ABSTRACT

Studies of 6He beta decay along with tritium can play an important role in testing ab initio nuclear wave-function calculations and may allow for fixing low-energy constants in effective-field theories. Here, we present an improved determination of the 6He half-life to a relative precision of 3×10(-4). Our value of 806.89±0.11(stat)(-0.19syst)(+0.23) ms resolves a major discrepancy between previous measurements. Calculating the statistical rate function we determined the ft value to be 803.04(-0.23)(+0.26) s. The extracted Gamow-Teller matrix element agrees within a few percent with ab initio calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...