Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 15: 313-325, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753413

ABSTRACT

The diheteroarylamide-based compound 1C8 and the aminothiazole carboxamide-related compound GPS167 inhibit the CLK kinases, and affect the proliferation of a broad range of cancer cell lines. A chemogenomic screen previously performed with GPS167 revealed that the depletion of components associated with mitotic spindle assembly altered sensitivity to GPS167. Here, a similar screen performed with 1C8 also established the impact of components involved in mitotic spindle assembly. Accordingly, transcriptome analyses of cells treated with 1C8 and GPS167 indicated that the expression and RNA splicing of transcripts encoding mitotic spindle assembly components were affected. The functional relevance of the microtubule connection was confirmed by showing that subtoxic concentrations of drugs affecting mitotic spindle assembly increased sensitivity to GPS167. 1C8 and GPS167 impacted the expression and splicing of transcripts in pathways relevant to tumor progression, including MYC targets and the epithelial mesenchymal transition (EMT). Finally, 1C8 and GPS167 altered the expression and alternative splicing of transcripts involved in the antiviral immune response. Consistent with this observation, depleting the double-stranded RNA sensor DHX33 suppressed GPS167-mediated cytotoxicity on HCT116 cells. Our study uncovered molecular mechanisms through which 1C8 and GPS167 affect cancer cell proliferation as well as processes critical for metastasis.


Subject(s)
Cell Proliferation , Epithelial-Mesenchymal Transition , Protein Kinase Inhibitors , Protein-Tyrosine Kinases , Humans , Epithelial-Mesenchymal Transition/drug effects , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Protein Kinase Inhibitors/pharmacology , Cell Proliferation/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Thiazoles/pharmacology , Antiviral Agents/pharmacology , HCT116 Cells , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Gene Expression Profiling
2.
Molecules ; 29(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38257256

ABSTRACT

Tomatidine (TO) is a natural narrow-spectrum antibiotic acting on the Staphylococcus aureus small colony variant (SCV) with a minimal inhibitory concentration (MIC) of 0.06 µg/mL while it shows no activity against prototypical strains (MIC > 128 µg/mL). To expand the spectrum of activity of TO, the 3ß-hydroxyl group was substituted with an ethane-1,2-diamine, resulting in two diastereoisomers, TM-02 (C3-ß) and TM-03 (C3-α). These molecules are equally potent against prototypical S. aureus and E. coli strains (MIC 8 and 32 µg/mL, respectively), whereas TM-02 is more potent against SCV (MIC 0.5 µg/mL) and hyperpermeable E. coli strains (MIC 1 µg/mL). The differences in their modes of action were investigated. We used membrane vesicles to confirm the inhibition of the bacterial ATP synthase, the documented target of TO, and measured effects on bacterial cell membranes. Both molecules inhibited E. coli ATP synthase, with Ki values of 1.1 µM and 3.5 µM for TM-02 and TM-03, respectively, and the bactericidal effect of TM-02 was linked to ATP synthase inhibition. Furthermore, TM-02 had no major effect on the membrane fluidity and gradually reduced membrane potential. In contrast, TM-03 caused structural damages to membranes and completely disrupted the membrane potential (>90%). We were successful in broadening the spectrum of activity of TO. C3-ß-diastereoisomers may have more specific antibacterial action than C3-α.


Subject(s)
Escherichia coli , Staphylococcus aureus , Tomatine/analogs & derivatives , Anti-Bacterial Agents/pharmacology , Adenosine Triphosphate
3.
ChemMedChem ; 19(2): e202300458, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37864572

ABSTRACT

Human influenza viruses cause acute respiratory symptoms that can lead to death. Due to the emergence of antiviral drug-resistant strains, there is an urgent requirement for novel antiviral agents and innovative therapeutic strategies. Using the peptidomimetic ketobenzothiazole protease inhibitor RQAR-Kbt (IN-1, aka N-0100) as a starting point, we report how substituting P2 and P4 positions with natural and unnatural amino acids can modulate the inhibition potency toward matriptase, a prototypical type II transmembrane serine protease (TTSP) that acts as a priming protease for influenza viruses. We also introduced modifications of the peptidomimetics N-terminal groups, leading to significant improvements (from µM to nM, 60 times more potent than IN-1) in their ability to inhibit the replication of influenza H1N1 virus in the Calu-3 cell line derived from human lungs. The selectivity towards other proteases has been evaluated and explained using molecular modeling with a crystal structure recently obtained by our group. By targeting host cell TTSPs as a therapeutic approach, it may be possible to overcome the high mutational rate of influenza viruses and consequently prevent potential drug resistance.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Humans , Serine Proteinase Inhibitors/pharmacology , Influenza A virus/physiology , Serine Proteases/metabolism , Influenza, Human/drug therapy , Protease Inhibitors/pharmacology , Virus Replication
4.
Eur J Med Chem ; 262: 115886, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37924710

ABSTRACT

Antibiotic resistance is escalating alarmingly worldwide. Bacterial resistance mechanisms are surfacing and proliferating across the globe, jeopardizing our capacity to manage prevalent infectious illnesses. Without drastic measures, we risk entering a post-antibiotic era, where even trivial infections and injuries can cause death again. In this context, we have developed a new class of antibiotics based on tomatidine (TO), a natural product derived from tomato plants, with a novel mode of action by targeting bacterial ATP synthases. The first generation of compounds proved highly specific for small-colony variants (SCVs) of Staphylococcus aureus. However, optimization of this scaffold through extensive structure-activity relationship studies has enabled us to broaden its effectiveness to include both Gram-positive and Gram-negative bacteria. Notably, the results showed that specific C3-modification of TO could improve ATP synthase inhibition and also bypass the outer membrane barrier of Gram-negative bacteria to gain substantial growth inhibition including against multi-resistant strains.


Subject(s)
Anti-Bacterial Agents , Gardens , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria , Gram-Positive Bacteria , Adenosine Triphosphate
5.
Molecules ; 28(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37446619

ABSTRACT

Steroidal (glycol)alkaloids S(G)As are secondary metabolites made of a nitrogen-containing steroidal skeleton linked to a (poly)saccharide, naturally occurring in the members of the Solanaceae and Liliaceae plant families. The genus Solanum is familiar to all of us as a food source (tomato, potato, eggplant), but a few populations have also made it part of their ethnobotany for their medicinal properties. The recent development of the isolation, purification and analysis techniques have shed light on the structural diversity among the SGAs family, thus attracting scientists to investigate their various pharmacological properties. This review aims to overview the recent literature (2012-2022) on the pharmacological benefits displayed by the SGAs family. Over 17 different potential therapeutic applications (antibiotic, antiviral, anti-inflammatory, etc.) were reported over the past ten years, and this unique review analyzes each pharmacological effect independently without discrimination of either the SGA's chemical identity or their sources. A strong emphasis is placed on the discovery of their biological targets and the subsequent cellular mechanisms, discussing in vitro to in vivo biological data. The therapeutic value and the challenges of the solanum steroidal glycoalkaloid family is debated to provide new insights for future research towards clinical development.


Subject(s)
Alkaloids , Population Health , Solanum lycopersicum , Solanum nigrum , Solanum tuberosum , Solanum , Humans , Solanum/metabolism , Alkaloids/chemistry , Solanum tuberosum/metabolism , Solanum nigrum/metabolism
6.
Org Lett ; 21(14): 5562-5566, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31273996

ABSTRACT

A highly regioselective synthesis of valuable gem-difluorinated C-furanosides from unprotected aldoses via a debenzylative cycloetherification (DBCE) reaction induced by diethylaminosulfur trifluoride is descibed. The scope and limitations of this DBCE reaction are described using a series of commercially available pentoses and hexoses to afford, without selective protection/deprotection sequences, the corresponding gem-difluorinated C-furanosides in moderate to good yields.

7.
Chem Commun (Camb) ; 54(70): 9845-9848, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30110026

ABSTRACT

An efficient and regioselective approach for the construction of synthetically important γ-lactone glycosides is reported from unprotected aldoses through a new debenzylative lactonization (DBL) reaction. The scope and limitations of this DBL reaction are described starting from a series of commercially available hexoses (l-fucose, d-galactose, d-glucose) and pentoses (d-arabinose, d-ribose, d-lyxose, d-xylose) to afford the corresponding γ-lactones in good yields and without concomitant δ-lactone formation.

8.
Chemistry ; 22(28): 9456-76, 2016 Jul 04.
Article in English | MEDLINE | ID: mdl-27304427

ABSTRACT

Tetrahydrofuran (THF) is a major structural feature found in many synthetic and natural products displaying a variety of biological properties. This review summarizes the main synthetic approaches that have been developed to construct tetrahydrofuran moieties involving debenzylative cycloetherification reactions (DBCE). Interestingly, this reaction is regio- and stereoselective without the requirement of a selective protection/deprotection strategy. Many applications of this process have been reported, including carbafuranoside synthesis, regioselective deprotection of the benzyl group positioned γ to an alkene, and total synthesis of natural products. The stereochemical outcome and the mechanism of these interesting transformations are also discussed.


Subject(s)
Alkenes/chemical synthesis , Biological Products/chemistry , Furans/chemical synthesis , Alkenes/chemistry , Biological Products/chemical synthesis , Catalysis , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...