Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 21(24): 8816-25, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-25933417

ABSTRACT

An electron donor-acceptor dyad based on a polychlorotriphenylmethyl (PTM) radical subunit linked to a tetrathiafulvalene (TTF) unit through a π-conjugated N-phenyl-pyrrole-vinylene bridge has been synthesized and characterized. The intramolecular electron transfer process and magnetic properties of the radical dyad have been evaluated by cyclic voltammetry, UV/Vis spectroscopy, vibrational spectroscopy, and ESR spectroscopy in solution and in the solid state. The self-assembling abilities of the radical dyad and of its protonated non-radical analogue have been investigated by X-ray crystallographic analysis, which revealed that the radical dyad produced a supramolecular architecture with segregated donor and acceptor units in which the TTF subunits were arranged in 1D herringbone-type stacks. Analysis of the X-ray data at different temperatures suggests that the two inequivalent molecules that form the asymmetric unit of the crystal of the radical dyad evolve into an opposite degree of electronic delocalization as the temperature decreases.


Subject(s)
Heterocyclic Compounds/chemistry , Electron Transport , Molecular Structure
2.
J Chem Phys ; 141(16): 164317, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25362309

ABSTRACT

Essential-state models efficiently describe linear and nonlinear spectral properties of different families of charge-transfer chromophores. Here, the essential-state machinery is applied to the calculation of the early-stage dynamics after ultrafast (coherent) excitation of polar and quadrupolar chromophores. The fully non-adiabatic treatment of coupled electronic and vibrational motion allows for a reliable description of the dynamics of these intriguing systems. In particular, the proposed approach is reliable even when the adiabatic and harmonic approximations do not apply, such as for quadrupolar dyes that show a multistable, broken-symmetry excited state. Our approach quite naturally leads to a clear picture for a dynamical Jahn-Teller effect in these systems. The recovery of symmetry due to dynamical effects is however disrupted in polar solvents where a static symmetry lowering is observed. More generally, thermal disorder in polar solvents is responsible for dephasing phenomena, damping the coherent oscillations with particularly important effects in the case of polar dyes.

SELECTION OF CITATIONS
SEARCH DETAIL
...