Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38822789

ABSTRACT

In view of the increasing global demand and consumption of gold, there is a growing need and effort to extract gold from alternative sources besides conventional mining, e.g., from water. This drive is mainly due to the potential benefits for the economy and the environment as these sources contain large quantities of the precious metal that can be utilized. Wastewater is one of these valuable sources in which the gold concentration can be in the ppb range. However, the effective selective recovery and recycling of ultratrace amounts of this metal remain a challenge. In this article, we describe the development of a covalent imine-based organic framework with pores containing thioanisole functional groups (TTASDFPs) formed by the condensation of a triazine-based triamine and an aromatic dialdehyde. The sulfur-functionalized pores served as effective chelating agents to bind Au3+ ions, as evidenced by the uptake of more than 99% of the 9 ppm Au3+ solution within 2 min. This is relatively fast kinetics compared with other adsorbents reported for gold adsorption. TTASDFP also showed a high removal capacity of 245 mg·g-1 and a clear selectivity toward gold ions. More importantly, the material can capture gold at concentrations as low as 1 ppb.

2.
Sci Rep ; 13(1): 19705, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37952034

ABSTRACT

This work presents a hydrothermal-based facile method for synthesizing ZnFe2O4, whose size can be controlled with the concentration of sodium acetate used as a fuel and its physical changes at nanoscales when exposed to two different gases. The structural, morphological, compositional, and electronic properties of the synthesized samples are also presented in this paper. The crystal structure of the synthesized samples was determined using an X-ray Diffractometer (XRD). The results revealed fluctuations in the size, lattice parameter, and strain in the nanoparticles with increasing the concentration of sodium acetate. Field-Emission Scanning Electron Microscopy (FESEM) was used to determine synthesized materials' morphology and particle size. It revealed that the particles possessed approximately spherical morphology whose size decreased significantly with the increasing amount of sodium acetate. Transmission Electron Microscopy (TEM) was utilized to determine the structure, morphology, and elemental distributions in particles at the nanoscale, and it confirmed the findings of XRD and FESEM analyses. The high-resolution TEM (HRTEM) imaging analysis of the nanoparticles in our studied samples revealed that the particles predominantly possessed (001) type facets. X-ray photoelectron spectroscopy (XPS) and core-loss electron energy loss spectroscopy (EELS) showed an increasing fraction of Fe2+ with the decreasing size of the particles in samples. The Brunauer, Emmett, and Tellers (BET) analysis of samples revealed a higher surface area as the particle size decreases. In addition, the determined surface area and pore size values are compared with the literature, and it was found that the synthesized materials are promising for gas-sensing applications. The ab initio calculations of the Density of States (DOS) and Band structure of (001) surface terminating ZnFe2O4 were carried out using Quantum Espresso software to determine the bandgap of the synthesized samples. They were compared to their corresponding experimentally determined bandgap values and showed close agreement. Finally, in-situ TEM measurement was carried out on one of the four studied samples with robust properties using Ar and CO2 as reference and target gases, respectively. It is concluded from the presented study that the size reduction of the ZnFe2O4 nanoparticles (NPs) tunes the bandgap and provides more active sites due to a higher concentration of oxygen vacancies. The in-situ TEM showed us a nanoscale observation of the change in one of the crystal structure parameters. The d spacing of ZnFe2O4 NPs showed a noticeable fluctuation, reaching more than 5% upon exposure to CO2 and Ar gases.

3.
Nanotechnology ; 31(39): 395704, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32434169

ABSTRACT

As the most representative member of a new emerging family of 2D material, titanium carbides or nitrides (MXenes), Ti3C2Tx and its 2D assembly format, Ti3C2Tx film, have displayed outstanding performance in a broad range of practical applications. However the mechanical behaviors of Ti3C2Tx films are rarely reported. We report a systematic study of the tensile behavior of Ti3C2Tx films. Ti3C2Tx films with various thicknesses (2-17 µm) were prepared by the vacuum filtration method. Quasi-static tension and cyclic tension tests were performed to investigate the deformation and fracture mechanism of Ti3C2Tx films. It was found that: (1) the relative sliding between Ti3C2Tx flakes is the dominant deformation mechanism of Ti3C2Tx films. Cyclic loading-releasing in tension suppresses the inter-layer sliding of Ti3C2Tx flakes effectively and thus the tensile strength of thicker Ti3C2Tx film (5 µm) film improves from 57 MPa to 67 MPa. (2) The mechanical properties of Ti3C2Tx films are found to be thickness dependent. When the film thickness increases from 2.3 to 17 µm, the tensile strength and elastic modulus drop from 61 to 36 MPa and from 17 to 8 GPa, respectively. This is interpreted as more structural defects presented in the through-the-thickness direction as film thickness is increased. (3) Moderate ultrasonication pretreatment (30 min) reduces the Ti3C2Tx flake size significantly while improving the compactness of the Ti3C2Tx film; and the resulting Ti3C2Tx film shows a linear stress-strain relationship without plastic-like deformation. As a result, the tensile strength of 5 µm thick Ti3C2Tx film is enhanced to 85 MPa; (4) Structural defects of the Ti3C2Tx film have significant effects on both the brittle-like fracture behavior and the distribution of tensile strength.

4.
Org Lett ; 16(9): 2326-9, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24730677

ABSTRACT

We have recently introduced aromatic oligoamide ß-sheet foldamers based on rigid turn units and short linear strands that undergo intramolecular π-π stacking (Sebaoun, L.; Maurizot, V.; Granier, T.; Kauffmann, B.; Huc, I. J. Am. Chem. Soc. 2014, 136, 2168). We now report that conformational stability in these structures can be reached using less rigid turn units and more extensive π-π interactions between longer linear strands. For this study, two-stranded sheets of variable length were prepared. Their conformation was assessed in solution by (1)H NMR and in the solid state by X-ray crystallography.


Subject(s)
Amides/chemistry , Molecular Conformation , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Molecular Structure , Solid-Phase Synthesis Techniques , Solutions
5.
Lab Chip ; 11(5): 779-87, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21157611

ABSTRACT

This mini-review focuses on two different miniaturizing approaches: the first one describes the generation and use of droplets flowing within a millifluidic tool as individual batch microreactors. The second one reports the use of high pressure microflows in chemistry. Millifluidics is an inexpensive, versatile and easy to use approach which is upscaled from microfluidics. It enables one to produce hierarchically organized multiple emulsions or particles with a good control over sizes and shapes, as well as to provide a convenient data acquisition platform dedicated to slow or rather fast chemical reactions, i.e., from hours to a few minutes. High-pressure resistant devices were recently fabricated and used to generate stable droplets from pressurized fluids such as supercritical fluid-liquid systems. We believe that supercritical microfluidics is a promising tool to develop sustainable processes in chemistry.

6.
Nano Lett ; 8(7): 1929-35, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18505303

ABSTRACT

Diverse chiral nanometric ribbons and tubules formed by self-assembly of organic amphiphilic molecules could be transcribed to inorganic nanostructures using a novel sol-gel transcription protocol with tetraethoxysilane (TEOS) in the absence of catalyst or cosolvent. By controlling parameters such as temperature or the concentration of the different reactants, we could finely tune the morphology of the inorganic nanostructures formed from organic templates. This fine-tuning has also been achieved upon controlling the kinetics of both organic assembly formation and inorganic polycondensation. The results presented herein show that the dynamic and versatile nature of the organic gels considerably enhances the tunability of inorganic materials with rich polymorphisms.


Subject(s)
Lipids/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Silicon Dioxide/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...