Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 29(12): 3982-3986, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30408949

ABSTRACT

Endogenously expressed noncoding RNAs are regulators of mRNA translation and affect diverse biological pathways spanning embryogenesis to cholesterol and fatty acid metabolism. Recently, microRNAs have become an important therapeutic target with strategies that employ oligonucleotides as both mimics and inhibitors of target microRNAs, successfully altering gene expression and cellular pathways in relevant contexts. However, delivery of these exogenous effectors remains a major challenge. Here, we present a method for evaluating noncoding RNA delivery using the viral suppressor of RNA silencing (VSRS) protein p19, optimized for cellular delivery of small RNAs. Using genetic code expansion technology, p-azidophenylalanine (AzF) was incorporated into a recombinant p19 protein and used to develop a fluorescence resonance energy transfer (FRET) sensor. AzF was used to attach FRET acceptor moieties using bioorthogonal chemistry. We show that this strategy not only gives rise to FRET signals that report on small RNA binding, but also allows for fluorescence quenching as well, convenient for measuring RNA release. We demonstrate the successful use of a modified version of the probe to track the delivery and release of small RNAs into mammalian cells. The results provide a basis for a further development of vehicles for small RNA delivery and release for intervening in noncoding RNA biology.


Subject(s)
Genetic Code , RNA, Small Interfering/administration & dosage , RNA-Binding Proteins/metabolism , Animals , Fluorescence Resonance Energy Transfer , MicroRNAs/metabolism , Protein Biosynthesis , RNA Interference
2.
FASEB J ; 32(6): 3119-3132, 2018 06.
Article in English | MEDLINE | ID: mdl-29401618

ABSTRACT

IL-1 signaling is adhesion-restricted in many cell types, but the mechanism that drives it is not defined. We screened for proteins recruited to nascent adhesions in IL-1-treated human fibroblasts with tandem mass tag-mass spectrometry. We used fibronectin bead preparations to enrich 10 actin-associated proteins. There was a 1.2 times log 2-fold enrichment of actin capping protein (ACP) at 30 min after IL-1 stimulation. Knockdown (KD) of ACP by siRNA reduced IL-1-induced ERK activation(by 56%, matrix metalloproteinase-3 (MMP-3) expression by 48%, and MMP-9 expression by 62% (in all reductions, P < 0.01). Confocal or structured illumination microscopy showed that ACP was diffused throughout the cytosol but strongly accumulated at the ruffled border of spreading cells. ACP colocalized with nascent paxillin- and vinculin-containing adhesions at the ruffled border, but not with mature adhesions in the center. ACP KD promoted the formation of large, stable adhesions. Immunoprecipitation and proximity ligation analysis showed that ACP was associated with the IL-1 signal transduction proteins myeloid differentiation factor 88 (MyD88) and IL-1 receptor-associated kinase (IRAK) at the ruffled border of the leading edge. IL-1-induced phospho-ERK and MyD88 or IRAK colocalized at the leading edge. We concluded that ACP is required for recruitment and function of IL-1 signaling complexes in nascent adhesions at the leading edge of the cell.-Wang, Q., Delcorde, J., Tang, T., Downey, G. P., McCulloch, C. A. Regulation of IL-1 signaling through control of focal adhesion assembly.


Subject(s)
Actin Capping Proteins/metabolism , Fibroblasts/metabolism , Focal Adhesions/metabolism , Interleukin-1/metabolism , MAP Kinase Signaling System/physiology , Actin Capping Proteins/genetics , Fibroblasts/cytology , Focal Adhesions/genetics , Gene Knockdown Techniques , Humans , Interleukin-1/genetics , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism
3.
FEBS J ; 281(16): 3751-65, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24980280

ABSTRACT

Cell-death-inducing DFF45-like effector B (CIDEB) is an apoptotic host factor, which was recently found to also regulate hepatic lipid homeostasis. Herein we delineate the relevance of these dual roles of CIDEB in apoptosis and lipid metabolism in the context of hepatitis C virus (HCV) replication. We demonstrate that HCV upregulates CIDEB expression in human serum differentiated hepatoma cells. CIDEB overexpression inhibits HCV replication in HCV replicon expressing Huh7.5 cells, while small interfering RNA knockdown of CIDEB expression in human serum differentiated hepatoma cells promotes HCV replication and secretion of viral proteins. Furthermore, we characterize a CIDEB mutant, KRRA, which is deficient in lipid droplet clustering and fusion and demonstrate that CIDEB-mediated inhibition of HCV is independent of the protein's lipid droplet fusogenic role. Our results suggest that higher levels of CIDEB expression, which favour an apoptotic role for the host factor, inhibit HCV. Collectively, our data demonstrate that CIDEB can act as an anti-HCV host factor and contribute to altered triglyceride homeostasis.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Hepacivirus/physiology , Virus Replication , Caspase 3/metabolism , Caspase 7/metabolism , Caspases/metabolism , Cell Line, Tumor , Homeostasis , Host-Pathogen Interactions , Humans , Lipid Metabolism , Triglycerides/metabolism
4.
Biochem Biophys Res Commun ; 441(2): 447-52, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24161736

ABSTRACT

Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limited cell culture models readily available to study CIDEB's role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1α, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEB's role in LD fusion, and presents a new model system to study the PGC-1α/CIDEB pathway's role in LD dynamics and the VLDL pathway.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Hepatocytes/metabolism , Lipoproteins, VLDL/metabolism , Serum/physiology , Apoptosis Regulatory Proteins/genetics , Cell Differentiation , Cell Line, Tumor , Gene Knockdown Techniques , Hepatocytes/cytology , Humans , Inclusion Bodies , Models, Biological , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , RNA, Small Interfering/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...