Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37960479

ABSTRACT

The water of high Andean lakes is strongly affected by anthropic activities. However, due to its complexity this ecosystem is poorly researched. This study analyzes water quality using Sentinel-2 (S2) images in high Andean lakes with apparent different eutrophication states. Spatial and temporal patterns are assessed for biophysical water variables from automatic products as obtained from versions of C2RCC (Case 2 Regional Coast Color) processor (i.e., C2RCC, C2X, and C2X-COMPLEX) to observe water characteristics and eutrophication states in detail. These results were validated using in situ water sampling. C2X-COMPLEX appeared to be an appropriate option to study bodies of water with a complex dynamic of water composition. C2RCC was adequate for lakes with high transparency, typical for lakes of highlands with excellent water quality. The Yambo lake, with chlorophyll-a concentration (CHL) values of 79.6 ± 5 mg/m3, was in the eutrophic to hyper-eutrophic state. The Colta lake, with variable values of CHL, was between the oligotrophic to mesotrophic state, and the Atillo lakes, with values of 0.16 ± 0.1 mg/m3, were oligotrophic and even ultra-oligotrophic, which remained stable in the last few years. Automatic S2 water products give information about water quality, which in turn makes it possible to analyze its causes.

2.
Plant Soil ; 479(1-2): 159-183, 2022.
Article in English | MEDLINE | ID: mdl-36398064

ABSTRACT

Background and aims: The quantitative retrieval of soil organic carbon (SOC) storage, particularly for soils with a large potential for carbon sequestration, is of global interest due to its link with the carbon cycle and the mitigation of climate change. However, complex ecosystems with good soil qualities for SOC storage are poorly studied. Methods: The interrelation between SOC and various vegetation remote sensing drivers is understood to demonstrate the link between the carbon stored in the vegetation layer and SOC of the top soil layers. Based on the mapping of SOC in two horizons (0-30 cm and 30-60 cm) we predict SOC with high accuracy in the complex and mountainous heterogeneous páramo system in Ecuador. A large SOC database (in weight % and in Mg/ha) of 493 and 494 SOC sampling data points from 0-30 cm and 30-60 cm soil profiles, respectively, were used to calibrate GPR models using Sentinel-2 and GIS predictors (i.e., Temperature, Elevation, Soil Taxonomy, Geological Unit, Slope Length and Steepness (LS Factor), Orientation and Precipitation). Results: In the 0-30 cm soil profile, the models achieved a R2 of 0.85 (SOC%) and a R2 of 0.79 (SOC Mg/ha). In the 30-60 cm soil profile, models achieved a R2 of 0.86 (SOC%), and a R2 of 0.79 (SOC Mg/ha). Conclusions: The used Sentinel-2 variables (FVC, CWC, LCC/Cab, band 5 (705 nm) and SeLI index) were able to improve the estimation accuracy between 3-21% compared to previous results of the same study area. CWC emerged as the most relevant biophysical variable for SOC prediction. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-022-05506-1.

3.
Remote Sens (Basel) ; 14(18): 4531, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36186714

ABSTRACT

Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop's phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learning regression algorithm, i.e., Gaussian processes regression, and an active learning technique to estimate LAI, CCC and VWC of irrigated winter wheat. The established hybrid models of the three traits were validated against in-situ data of a wheat campaign in the Bonaerense valley, South of the Buenos Aires Province, Argentina, in the year 2020. We obtained good to highly accurate validation results with LAI: R2 = 0.92, RMSE = 0.43 m2 m-2, CCC: R2 = 0.80, RMSE = 0.27 g m-2 and VWC: R2 = 0.75, RMSE = 416 g m-2. The retrieval models were also applied to a series of S2 images, producing time series along the seasonal cycle, which reflected the effects of fertilizer and irrigation on crop growth. The associated uncertainties along with the obtained maps underlined the robustness of the hybrid retrieval workflow. We conclude that processing S2 imagery with optimised hybrid models allows accurate space-based crop traits mapping over large irrigated areas and thus can support agricultural management decisions.

4.
Agronomy (Basel) ; 12(8): 1884, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36081889

ABSTRACT

The production of onions bulbs (Allium cepa L.) requires a high amount of nitrogen. According to the demand of sustainable agriculture, the information-development and communication technologies allow for improving the efficiency of nitrogen fertilization. In the south of the province of Buenos Aires, Argentina, between 8000 and 10,000 hectares per year-1 are cultivated in the districts of Villarino and Patagones. This work aimed to analyze the relationship of biophysical variables: leaf area index (LAI), canopy chlorophyll content (CCC), and canopy cover factor (fCOVER), with the nitrogen fertilization of an intermediate cycle onion crop and its effects on yield. A field trial study with different doses of granulated urea and granulated urea was carried out, where biophysical characteristics were evaluated in the field and in Sentinel-2 satellite observations. Field data correlated well with satellite data, with an R2 of 0.91, 0.96, and 0.85 for LAI, fCOVER, and CCC, respectively. The application of nitrogen in all its doses produced significantly higher yields than the control. The LAI and CCC variables had a positive correlation with yield in the months of November and December. A significant difference was observed between U250 (62 Mg ha-1) and the other treatments. The U500 dose led to a yield increase of 27% compared to U250, while the difference between U750 and U500 was 6%.

5.
Remote Sens (Basel) ; 14(22): 5867, 2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36644377

ABSTRACT

Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of croplands from space. The C-band radar backscatter is sensitive to vegetation structure changes and phenology as well as soil moisture and roughness. It also varies depending on the local incidence angle (LIA) of the SAR acquisition's geometry. The LIA backscatter dependency could therefore be exploited to improve the retrieval of the crop biophysical variables. The availability of S1 radar time-series data at distinct observation angles holds the feasibility to retrieve leaf area index (LAI) evolution considering spatiotemporal coverage of intensively cultivated areas. Accordingly, this research presents a workflow merging multi-date S1 smoothed data acquired at distinct LIA with a Gaussian processes regression (GPR) and a cross-validation (CV) strategy to estimate cropland LAI of irrigated winter wheat. The GPR-S1-LAI model was tested against in situ data of the 2020 winter wheat campaign in the irrigated valley of Colorador river, South of Buenos Aires Province, Argentina. We achieved adequate validation results for LAI with R C V 2 = 0.67 and RMSE CV = 0.88 m2 m-2. The trained model was further applied to a series of S1 stacked images, generating temporal LAI maps that well reflect the crop growth cycle. The robustness of the retrieval workflow is supported by the associated uncertainties along with the obtained maps. We found that processing S1 smoothed imagery with distinct acquisition geometries permits accurate radar-based LAI modeling throughout large irrigated areas and in consequence can support agricultural management practices in cloudprone agri-environments.

7.
Carbon Balance Manag ; 16(1): 32, 2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34693465

ABSTRACT

BACKGROUND: Soil organic carbon (SOC) affects essential biological, biochemical, and physical soil functions such as nutrient cycling, water retention, water distribution, and soil structure stability. The Andean páramo known as such a high carbon and water storage capacity ecosystem is a complex, heterogeneous and remote ecosystem complicating field studies to collect SOC data. Here, we propose a multi-predictor remote quantification of SOC using Random Forest Regression to map SOC stock in the herbaceous páramo of the Chimborazo province, Ecuador. RESULTS: Spectral indices derived from the Landsat-8 (L8) sensors, OLI and TIRS, topographic, geological, soil taxonomy and climate variables were used in combination with 500 in situ SOC sampling data for training and calibrating a suitable predictive SOC model. The final predictive model selected uses nine predictors with a RMSE of 1.72% and a R2 of 0.82 for SOC expressed in weight %, a RMSE of 25.8 Mg/ha and a R2 of 0.77 for the model in units of Mg/ha. Satellite-derived indices such as VARIG, SLP, NDVI, NDWI, SAVI, EVI2, WDRVI, NDSI, NDMI, NBR and NBR2 were not found to be strong SOC predictors. Relevant predictors instead were in order of importance: geological unit, soil taxonomy, precipitation, elevation, orientation, slope length and steepness (LS Factor), Bare Soil Index (BI), average annual temperature and TOA Brightness Temperature. CONCLUSIONS: Variables such as the BI index derived from satellite images and the LS factor from the DEM increase the SOC mapping accuracy. The mapping results show that over 57% of the study area contains high concentrations of SOC, between 150 and 205 Mg/ha, positioning the herbaceous páramo as an ecosystem of global importance. The results obtained with this study can be used to extent the SOC mapping in the whole herbaceous ecosystem of Ecuador offering an efficient and accurate methodology without the need for intensive in situ sampling.

8.
Environ Sci Pollut Res Int ; 28(26): 34990-35011, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33661492

ABSTRACT

Satellite images were used to assess surface water quality based on the concentration of chlorophyll a (chla), light penetration measured by the Secchi disk method (SD), and the Cyanobacteria cells number per mL (cyano). For this case study, six reservoirs interconnected were evaluated, comprising the Cantareira System (CS) in São Paulo State (Brazil). The work employed Sentinel-2 images from 2015 to 2018, SNAP image processing software, and the native products conc_chl and kd_z90max, treated using Case 2 Regional Coast Color (C2RCC) atmospheric correction. The database was obtained from CETESB, the agency legally responsible for operation of the Inland Water Quality Monitoring Network in São Paulo State. The results demonstrated robustness in the estimates of chla (RMSE = 3.73; NRMSE% = 19%) and SD (RMSE = 2,26; NRMSE% = 14%). Due to the strong relationship between cyano and chla (r2 = 0.84, p < 0.01, n = 90), both obtained from field measurements, there was also robustness in cyano estimates based on the estimates of chla from the satellite images. The data revealed a clear pattern, with the upstream reservoirs being more eutrophic, compared to those downstream. There were evident concerns, about water quality, particularly due to the high numbers of Cyanobacteria cells, especially in the upstream reservoirs.


Subject(s)
Cyanobacteria , Water Quality , Brazil , Cell Count , Chlorophyll/analysis , Chlorophyll A , Environmental Monitoring
9.
Sci Total Environ ; 698: 134305, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31514039

ABSTRACT

Eutrophy in Albufera of Valencia (Eastern Iberian Peninsula) is a quite old problem since after the intense eutrophication processes throughout the 1960s. The system shifted to a turbid stable state consolidated by the virtual disappearance of macrophytes by the early 1970s. The lagoon has been studied extensively since the 1980s, but efforts to revert the system to a clear state have not yielded the expected results because cultural eutrophication due to the growth of population in its area of influence and the effects of climate change, decreasing rainfall and increasing evaporation. This has driven to an increase in water retention times in the lagoon in recent years, resulting in a phytoplanktonic shift towards potentially toxic cyanobacteria species, often forming blooms. Cyanobacterial blooms severely affect water quality for human use, ranging from recreation and fishing to drinking water resources, as indicated in the surveillance protocol of World Health Organization (WHO). The current state of the lake requires constant monitoring and remote sensing is an optimal tool for the continuous monitoring of the whole water mass. This work is included in the ESAQS project (Ecological Status of AQuatic systems with Sentinel satellites), to establish a protocol for regular and frequent monitoring of the ecological status of reservoirs, lakes and lagoons. Algorithms are developed using the images provided by the Sentinel-2 (A and B), provided with a spatial resolution of 10 m and a temporal frequency of 5 days. In this work we demonstrate that using this new earth observation satellite is possible to develop a consistent and suitable algorithm to estimate the phycocyanin concentration [PC] and establish a protocol for regular and frequent monitoring. Calibrating (R2 = 0.841; n = 21; p < 0.001) and validating (R2 = 0.775; n = 55; p < 0.001; RMSE% = 40) the algorithm with field data are also demonstrated.


Subject(s)
Cyanobacteria/growth & development , Environmental Monitoring/methods , Eutrophication , Remote Sensing Technology , Phytoplankton , Spain , Water Quality
10.
Sensors (Basel) ; 19(4)2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30795571

ABSTRACT

The spatial quantification of green leaf area index (LAIgreen), the total green photosynthetically active leaf area per ground area, is a crucial biophysical variable for agroecosystem monitoring. The Sentinel-2 mission is with (1) a temporal resolution lower than a week, (2) a spatial resolution of up to 10 m, and (3) narrow bands in the red and red-edge region, a highly promising mission for agricultural monitoring. The aim of this work is to define an easy implementable LAIgreen index for the Sentinel-2 mission. Two large and independent multi-crop datasets of in situ collected LAIgreen measurements were used. Commonly used LAIgreen indices applied on the Sentinel-2 10 m × 10 m pixel resulted in a validation R² lower than 0.6. By calculating all Sentinel-2 band combinations to identify high correlation and physical basis with LAIgreen, the new Sentinel-2 LAIgreen Index (SeLI) was defined. SeLI is a normalized index that uses the 705 nm and 865 nm centered bands, exploiting the red-edge region for low-saturating absorption sensitivity to photosynthetic vegetation. A R² of 0.708 (root mean squared error (RMSE) = 0.67) and a R² of 0.732 (RMSE = 0.69) were obtained with a linear fitting for the calibration and validation datasets, respectively, outperforming established indices. Sentinel-2 LAIgreen maps are presented.

11.
Int J Appl Earth Obs Geoinf ; 67: 69-78, 2018 May.
Article in English | MEDLINE | ID: mdl-36082024

ABSTRACT

Crop canopy water content (CWC) is an essential indicator of the crop's physiological state. While a diverse range of vegetation indices have earlier been developed for the remote estimation of CWC, most of them are defined for specific crop types and areas, making them less universally applicable. We propose two new water content indices applicable to a wide variety of crop types, allowing to derive CWC maps at a large spatial scale. These indices were developed based on PROSAIL simulations and then optimized with an experimental dataset (SPARC03; Barrax, Spain). This dataset consists of water content and other biophysical variables for five common crop types (lucerne, corn, potato, sugar beet and onion) and corresponding top-of-canopy (TOC) reflectance spectra acquired by the hyperspectral HyMap airborne sensor. First, commonly used water content index formulations were analysed and validated for the variety of crops, overall resulting in a R2 lower than 0.6. In an attempt to move towards more generically applicable indices, the two new CWC indices exploit the principal water absorption features in the near-infrared by using multiple bands sensitive to water content. We propose the Water Absorption Area Index (WAAI) as the difference between the area under the null water content of TOC reflectance (reference line) simulated with PROSAIL and the area under measured TOC reflectance between 911 and 1271 nm. We also propose the Depth Water Index (DWI), a simplified four-band index based on the spectral depths produced by the water absorption at 970 and 1200 nm and two reference bands. Both the WAAI and DWI outperform established indices in predicting CWC when applied to heterogeneous croplands, with a R2 of 0.8 and 0.7, respectively, using an exponential fit. However, these indices did not perform well for species with a low fractional vegetation cover (< 30%). HyMap CWC maps calculated with both indices are shown for the Barrax region. The results confirmed the potential of using generically applicable indices for calculating CWC over a great variety of crops.

12.
J Environ Manage ; 151: 416-26, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25602695

ABSTRACT

Lake eutrophication is a critical issue in the interplay of water supply, environmental management, and ecosystem conservation. Integrated sensing, monitoring, and modeling for a holistic lake water quality assessment with respect to multiple constituents is in acute need. The aim of this paper is to develop an integrated algorithm for data fusion and mining of satellite remote sensing images to generate daily estimates of some water quality parameters of interest, such as chlorophyll a concentrations and water transparency, to be applied for the assessment of the hypertrophic Albufera de Valencia. The Albufera de Valencia is the largest freshwater lake in Spain, which can often present values of chlorophyll a concentration over 200 mg m(-3) and values of transparency (Secchi Disk, SD) as low as 20 cm. Remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper (TM) and Enhance Thematic Mapper (ETM+) images were fused to carry out an integrative near-real time water quality assessment on a daily basis. Landsat images are useful to study the spatial variability of the water quality parameters, due to its spatial resolution of 30 m, in comparison to the low spatial resolution (250/500 m) of MODIS. While Landsat offers a high spatial resolution, the low temporal resolution of 16 days is a significant drawback to achieve a near real-time monitoring system. This gap may be bridged by using MODIS images that have a high temporal resolution of 1 day, in spite of its low spatial resolution. Synthetic Landsat images were fused for dates with no Landsat overpass over the study area. Finally, with a suite of ground truth data, a few genetic programming (GP) models were derived to estimate the water quality using the fused surface reflectance data as inputs. The GP model for chlorophyll a estimation yielded a R(2) of 0.94, with a Root Mean Square Error (RMSE) = 8 mg m(-3), and the GP model for water transparency estimation using Secchi disk showed a R(2) of 0.89, with an RMSE = 4 cm. With this effort, the spatiotemporal variations of water transparency and chlorophyll a concentrations may be assessed simultaneously on a daily basis throughout the lake for environmental management.


Subject(s)
Lakes/chemistry , Water Quality/standards , Water Supply/standards , Data Mining , Ecosystem , Environmental Monitoring/methods , Spacecraft , Spain
13.
Environ Pollut ; 173: 29-37, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23202634

ABSTRACT

Passive steady-state chlorophyll fluorescence (Fs) provides a direct diagnosis of the functional status of vegetation photosynthesis. With the prospect of mapping Fs using remote sensing techniques, field measurements are mandatory to understand to which extent Fs allows detecting plant stress in different environments. Trees of four common species in Valencia were classified in either a low or a high local traffic exposure class based on their leaf magnetic value. Upward and downward hyperspectral fluorescence yield (FY) and indices based on the two Fs peaks (at 687 and 741 nm) were calculated. FY indices of P. canariensis and P. x acerifolia were significantly different between the two traffic exposure classes defined, but not for C. australis nor M. alba. While chlorophyll content could not indicate the difference between low and high traffic exposure, the FY(687)/FY(741) peak ratio increased significantly (p < 0.05) for both leaf sides for the higher traffic exposure class.


Subject(s)
Air Pollutants/analysis , Chlorophyll/metabolism , Environmental Monitoring/methods , Photosynthesis , Sunlight , Trees/physiology , Air Pollution/statistics & numerical data , Automobiles/statistics & numerical data , Fluorescence , Spain , Vehicle Emissions/analysis
14.
Sensors (Basel) ; 11(7): 7063-81, 2011.
Article in English | MEDLINE | ID: mdl-22164004

ABSTRACT

ESA's upcoming satellite Sentinel-2 will provide Earth images of high spatial, spectral and temporal resolution and aims to ensure continuity for Landsat and SPOT observations. In comparison to the latter sensors, Sentinel-2 incorporates three new spectral bands in the red-edge region, which are centered at 705, 740 and 783 nm. This study addresses the importance of these new bands for the retrieval and monitoring of two important biophysical parameters: green leaf area index (LAI) and chlorophyll content (Ch). With data from several ESA field campaigns over agricultural sites (SPARC, AgriSAR, CEFLES2) we have evaluated the efficacy of two empirical methods that specifically make use of the new Sentinel-2 bands. First, it was shown that LAI can be derived from a generic normalized difference index (NDI) using hyperspectral data, with 674 nm with 712 nm as best performing bands. These bands are positioned closely to the Sentinel-2 B4 (665 nm) and the new red-edge B5 (705 nm) band. The method has been applied to simulated Sentinel-2 data. The resulting green LAI map was validated against field data of various crop types, thereby spanning a LAI between 0 and 6, and yielded a RMSE of 0.6. Second, the recently developed "Normalized Area Over reflectance Curve" (NAOC), an index that derives Ch from hyperspectral data, was studied on its compatibility with simulated Sentinel-2 data. This index integrates the reflectance curve between 643 and 795 nm, thereby including the new Sentinel-2 bands in the red-edge region. We found that these new bands significantly improve the accuracy of Ch estimation. Both methods emphasize the importance of red-edge bands for operational estimation of biophysical parameters from Sentinel-2.


Subject(s)
Chlorophyll/analysis , Plant Leaves/chemistry , Spacecraft , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL
...