Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(3): 034716, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37012800

ABSTRACT

This article reports on the use of a Field Programmable Gate Array (FPGA) platform for local ultra-stable optical frequency distribution through a 90 m-long fiber network. This platform is used to implement a fully digital treatment of the Doppler-cancellation scheme required by fiber links to be able to distribute ultra-stable frequencies. We present a novel protocol that uses aliased images of a digital synthesizer output to directly generate signals above the Nyquist frequency. This approach significantly simplifies the setup, making it easy to duplicate within a local fiber network. We demonstrate performances enabling the distribution of an optical signal with an instability below 10-17 at 1 s at the receiver end. We also use the board to implement an original characterization method. It leads to an efficient characterization of the disturbance rejection of the system that can be realized without accessing the remote output of the fiber link.

2.
Phys Rev Lett ; 118(10): 103403, 2017 Mar 10.
Article in English | MEDLINE | ID: mdl-28339272

ABSTRACT

We study three-body recombination in an ultracold Bose-Fermi mixture. We first show theoretically that, for weak interspecies coupling, the loss rate is proportional to Tan's contact. Second, using a ^{7}Li/^{6}Li mixture we probe the recombination rate in both the thermal and dual superfluid regimes. We find excellent agreement with our model in the BEC-BCS crossover. At unitarity where the fermion-fermion scattering length diverges, we show that the loss rate is proportional to n_{f}^{4/3}, where n_{f} is the fermionic density. This unusual exponent signals nontrivial two-body correlations in the system. Our results demonstrate that few-body losses can be used as a quantitative probe of quantum correlations in many-body ensembles.

3.
Phys Rev Lett ; 115(26): 265303, 2015 Dec 31.
Article in English | MEDLINE | ID: mdl-26765001

ABSTRACT

We study the dynamics of counterflowing bosonic and fermionic lithium atoms. First, by tuning the interaction strength we measure the critical velocity v(c) of the system in the BEC-BCS crossover in the low temperature regime and we compare it to the recent prediction of Castin et al., C. R. Phys. 16, 241 (2015). Second, raising the temperature of the mixture slightly above the superfluid transitions reveals an unexpected phase locking of the oscillations of the clouds induced by dissipation.

SELECTION OF CITATIONS
SEARCH DETAIL
...