Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 77(3): 422-32, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19027720

ABSTRACT

The characterization of the potent p38 inhibitor BIRB796 as a dual inhibitor of p38/Jun N-terminal kinases (JNK) mitogen-activated protein kinases (EC 2.7.11.24) has complicated the interpretation of its reported anti-inflammatory activity. To better understand the contribution of JNK2 inhibition to the anti-inflammatory activities of BIRB796, we explored the relationship between the effects of BIRB796 and analogues on cytokine production and on cellular p38 and JNK signaling. We determined the binding affinity for BIRB796 and structural analogues to p38alpha and JNK2 and characterized compound 2 as a p38 inhibitor that binds to p38alpha with an affinity equivalent to BIRB796 but does not bind to any of the JNK isoforms. High-content imaging enabled us to show that the inhibition of p38 signaling by BIRB796 and analogues correlates with the ability of these compounds to inhibit the lipopolysaccharide (LPS)-induced TNF-alpha production in THP-1 monocytes. This finding was extended to cytokine release by disease-relevant human primary cells: to the production of TNF-alpha by peripheral blood mononuclear cells, and of IL-8 by neutrophils. Furthermore, BIRB796 and compound 2 inhibited the production of TNF-alpha in THP-1 monocytes and the IL-12/IL-18-induced production of interferon-gamma in human T-cells with similar potencies. In contrast, cellular JNK signaling in response to cytokines or stress stimuli was only weakly inhibited by BIRB796 and analogues and not affected by compound 2. In summary, our data suggest that p38 inhibition alone is sufficient to completely suppress cytokine production and that the added inhibition of JNK2 does not significantly contribute to the effects of BIRB796 on cytokine production.


Subject(s)
Cytokines/biosynthesis , Inflammation Mediators/metabolism , Mitogen-Activated Protein Kinase 9/antagonists & inhibitors , Naphthalenes/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Signal Transduction/drug effects , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , HeLa Cells , Humans
2.
Bioorg Med Chem Lett ; 17(18): 5025-31, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17692519

ABSTRACT

A new series of ligands for the glucocorticoid receptor (GR) is described. SAR development was guided by docking 3 into the GR active site and optimizing an unsubstituted phenyl ring for key interactions found in the steroid A-ring binding pocket. To identify compounds with an improved side effect profile over marketed steroids the functional activity of compounds was evaluated in cell based assays for transactivation (aromatase) and transrepression (IL-6). Through this effort, 36 has been identified as a partial agonist with a dissociated profile in these cell based assays.


Subject(s)
Glucocorticoids/agonists , Ligands , Models, Molecular , Structure-Activity Relationship
3.
Assay Drug Dev Technol ; 3(5): 483-99, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16305306

ABSTRACT

This report describes statistical validation methods implemented on assay data for inhibition of subcellular redistribution of nuclear factor kappaB (NF kappaB) in HeLa cells. We quantified cellular inhibition of cytoplasmic-nuclear translocation of NF kappaB in response to a range of concentrations of interleukin-1 (IL-1) receptor antagonist in the presence of IL-1alpha using eight replicate rows in each four 96-well plates scanned five times on each of 2 days. Translocation was measured as the fractional localized intensity of the nucleus (FLIN), an implementation of our more general fractional localized intensity of the compartments (FLIC), which analyzes whole compartments in the context of the entire cell. The NF kappaB antagonist assay (inhibition of IL-1- induced NF kappaB translocation) data were collected on a Q3DM (San Diego, CA) EIDAQtrade mark 100 high throughput microscopy system. [In 2003, Q3DM was purchased by Beckman Coulter Inc. (Fullerton, CA), which released the IC 100 successor to the EIDAQ 100.] The generalized FLIC method is described along with two-point (minimum-maximum) and multiple point titration statistical methods. As a ratio of compartment intensities that tend to change proportionally, FLIN was resistant to photobleaching errors. Two-point minimum-maximum statistical analyses yielded the following: a Z' of 0.174 with the data as n = 320 independent well samples; Z' by row data in a range of 0.393-0.933, with a mean of 0.766; by-plate Z' data of 0.310, 0.443, 0.545, and 0.794; and by-plate means of columns Z' data of 0.879, 0.927, 0.945, and 0.963. The mean 50% inhibitory concentration (IC50) for IL-1 receptor antagonist over all experiments was 213 ng/ml. The combined IC50 coefficients of variation (CVs) were 0.74%, 0.85%, 2.09%, and 2.52% for the four plates. Repeatability IC50 CVs were as follows: day to day 3.0%, row to row 8.0%, plate to plate 2.8%, and day to day 0.6%. The number of cells required for statistically resolvable differences in dose concentrations, plotted in a family of FLIN sigma/deltamicro (SD/range) curves and tabulated, demonstrated cell-by-cell assay precision with our combined sigma/deltamicro = 0.32 that required approximately 10-fold fewer cells than in a previously reported NF kappaB assay with sigma/deltamicro = 1.52. To better understand the relationship between cell-by-cell measurements and IC50 precision, 500 Monte Carlo simulations with varying cell-measurement SDs were used to explore three-, five-, seven-, and 11-point model titrations. The reductions in deltaIC50 90% confidence intervals from 11- to three-point titrations were 10-fold with the previously reported sigma/deltamicro = 1.52 and twofold with our sigma/deltamicro = 0.32. With these normalized parameters, this report provides a common statistical foundation, independent of the assay details, for evaluating the performance of imaging data on any instrument.


Subject(s)
Active Transport, Cell Nucleus/physiology , Biological Assay/methods , Cell Nucleus/metabolism , Image Interpretation, Computer-Assisted/methods , Microscopy, Fluorescence/methods , NF-kappa B/metabolism , Receptors, Interleukin-1/antagonists & inhibitors , Sialoglycoproteins/administration & dosage , Active Transport, Cell Nucleus/drug effects , Algorithms , Cell Count/methods , Cell Nucleus/ultrastructure , Data Interpretation, Statistical , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , HeLa Cells , Humans , Interleukin 1 Receptor Antagonist Protein , Protein Transport/drug effects , Protein Transport/physiology , Reproducibility of Results , Sensitivity and Specificity , Software , Software Validation
SELECTION OF CITATIONS
SEARCH DETAIL
...