Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 63: 67-73, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28823502

ABSTRACT

The effect of finger spread on overall drag on a swimmer's hand is relatively small, but could be relevant for elite swimmers. There are many sensitivities in measuring this effect. A comparison between numerical simulations, experiments and theory is urgently required to observe whether the effect is significant. In this study, the beneficial effect of a small finger spread in swimming is confirmed using three different but complementary methods. For the first time numerical simulations and laboratory experiments are conducted on the exact same 3D model of the hand with attached forearm. The virtual version of the hand with forearm was implemented in a numerical code by means of an immersed boundary method and the 3D printed physical version was studied in a wind tunnel experiment. An enhancement of the drag coefficient of 2% and 5% compared to the case with closed fingers was found for the numerical simulation and experiment, respectively. A 5% and 8% favorable effect on the (dimensionless) force moment at an optimal finger spreading of 10° was found, which indicates that the difference is more outspoken in the force moment. Moreover, an analytical model is proposed, using scaling arguments similar to the Betz actuator disk model, to explain the drag coefficient as a function of finger spacing.


Subject(s)
Hand/physiology , Swimming/physiology , Biomechanical Phenomena , Computer Simulation , Forearm/physiology , Humans , Models, Biological , Rheology/methods
2.
Philos Trans A Math Phys Eng Sci ; 369(1937): 723-37, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21242130

ABSTRACT

The turbulent/non-turbulent interface of a jet is characterized by sharp jumps ('discontinuities') in the conditional flow statistics relative to the interface. Experiments were carried out to measure the conditional flow statistics for a non-isothermal jet, i.e. a cooled jet. These experiments are complementary to previous experiments on an isothermal Re=2000 jet, where, in the present experiments on a non-isothermal jet, the thermal diffusivity is intermediate to the diffusivity of momentum and the diffusivity of mass. The experimental method is a combined laser-induced fluorescence/particle image velocimetry method, where a temperature-sensitive fluorescent dye (rhodamine 6G) is used to measure the instantaneous temperature fluctuations. The results show that the cooled jet can be considered to behave like a self-similar jet without any significant buoyancy effects. The detection of the interface is based on the instantaneous temperature, and provides a reliable means to detect the interface. Conditional flow statistics reveal the superlayer jump in the conditional vorticity and in the temperature.

3.
Pediatr Res ; 57(1): 16-21, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15531737

ABSTRACT

Cardiac pressure-volume relations enable quantification of intrinsic ventricular diastolic and systolic properties independent of loading conditions. The use of pressure-volume loop analysis in early stages of development could contribute to a better understanding of the relationship between hemodynamics and cardiac morphogenesis. The venous clip model is an intervention model for the chick embryo in which permanent obstruction of the right lateral vitelline vein temporarily reduces the mechanical load on the embryonic myocardium and induces a spectrum of outflow tract anomalies. We used pressure-volume loop analysis of the embryonic chick heart at stage 21 (3.5 d of incubation) to investigate whether the development of ventricular function is affected by venous clipping at stage 17, compared with normal control embryos. Steady state hemodynamic parameters demonstrated no significant differences between the venous clipped and control embryos. However, analysis of pressure-volume relations showed a significantly lower end-systolic elastance in the clipped embryos (slope of the end-systolic pressure-volume relation: 5.68 +/- 0.85 versus 11.76 +/- 2.70 mm Hg/microL, p < 0.05), indicating reduced contractility. Diastolic stiffness tended to be increased in the clipped embryos (slope of end-diastolic pressure-volume relation: 2.74 +/- 0.56 versus 1.67 +/- 0.21, p = 0.103), but the difference did not reach statistical significance. The results of the pressure-volume loop analysis show that 1 d after venous obstruction, development of ventricular function is affected, with reduced contractility. Pressure-volume analysis may be applied in the chick embryo and is a sensitive technique to detect subtle alterations in ventricular function.


Subject(s)
Blood Pressure/physiology , Embryo, Nonmammalian/physiology , Ventricular Function , Animals , Cardiac Volume , Chick Embryo , Diastole , Hemodynamics/drug effects , Models, Anatomic , Stroke Volume , Systole , Time Factors
4.
Ann N Y Acad Sci ; 972: 247-53, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12496025

ABSTRACT

Information concerning continuous or discreet phase flow in multiphase systems is desired for various practical and analytical applications. The potential of X-ray-based flow visualization and measurement of multiphase flow is demonstrated here by two non-intrusive methods: (1) Measurement of the three-dimensional (3D) velocity field of the continuous liquid phase in a bubble column by X-ray-based particle tracking velocimetry (PTV) of seeded particles. (2) Liquid flow visualization in a bubble column by injecting an X-ray absorbing liquid into the bubble column. X-rays have the advantage that they are not affected by the various refraction indices of the multiphase system and penetrate the multiphase flow in undistorted straight lines. Hence, in contrast to optical methods, both of these X-ray-based methods are independent of the void fraction and are applicable to opaque liquids.


Subject(s)
Image Processing, Computer-Assisted/methods , Water/chemistry , X-Rays , Biotechnology/methods , Gases , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...