Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
2.
Phys Med Biol ; 67(8)2022 04 04.
Article in English | MEDLINE | ID: mdl-35263722

ABSTRACT

Objective. To investigate the feasibility to train artificial neural networks (NN) to recover lateral dose profiles from detector measurements in a magnetic field.Approach. A novel framework based on a mathematical convolution model has been proposed to generate measurement-less training dataset. 2D dose deposition kernels and detector lateral fluence response functions of two air-filled ionization chambers and two diode-type detectors have been simulated without magnetic field and for magnetic fieldB = 0.35 and 1.5 T. Using these convolution kernels, training dataset consisting pairs of dose profilesDx,yand signal profilesMx,ywere computed for a total of 108 2D photon fluence profilesψ(x,y)(80% training/20% validation). The NN were tested using three independent datasets, where the second test dataset has been obtained from simulations using realistic phase space files of clinical linear accelerator and the third test dataset was measured at a conventional linac equipped with electromagnets. Mainresults. The convolution kernels show magnetic field dependence due to the influence of the Lorentz force on the electron transport in the water phantom and detectors. The NN show good performance during training and validation with mean square error reaching a value of 1e-6 or smaller. The corresponding correlation coefficientsRreached the value of 1 for all models indicating an excellent agreement between expectedDx,yand predictedDpredx,y.The comparisons betweenDx,yandDpredx,yusing the three test datasets resulted in gamma indices (1 mm/1% global) <1 for all evaluated data points.Significance. Two verification approaches have been proposed to warrant the mathematical consistencies of the NN outputs. Besides offering a correction strategy not existed so far for relative dosimetry in a magnetic field, this work could help to raise awareness and to improve understanding on the distortion of detector's signal profiles by a magnetic field.


Subject(s)
Photons , Radiometry , Machine Learning , Magnetic Fields , Monte Carlo Method , Particle Accelerators , Radiometry/methods
3.
Phys Med Biol ; 67(4)2022 02 09.
Article in English | MEDLINE | ID: mdl-35016163

ABSTRACT

Objective.This study investigates the perturbation correction factors of air-filled ionization chambers regarding their depth and magnetic field dependence. Focus has been placed on the displacement or gradient correction factorPgr.Additionally, the shift of the effective point of measurementPeffthat can be applied to account for the gradient effect has been compared between the cases with and without magnetic field.Approach.The perturbation correction factors have been simulated by stepwise modifications of the models of three ionization chambers (Farmer 30013, Semiflex 3D 31021 and PinPoint 3D 31022, all from PTW Freiburg). A 10 cm × 10 cm 6 MV photon beam perpendicular to the chamber's axis was used. A 1.5 T magnetic field was aligned parallel to the chamber's axis. The correction factors were determined between 0.4 and 20 cm depth. The shift ofPefffrom the chamber's reference pointPref,Δz,was determined by minimizing the variation of the ratio between dose-to-waterDwzref+Δzand the dose-to-airD¯airzrefalong the depth.Main Results.The perturbation correction factors with and without magnetic field are depth dependent in the build-up region but can be considered as constant beyond the depth of dose maximum. Additionally, the correction factors are modified by the magnetic field.Pgrat the reference depth is found to be larger in 1.5 T magnetic field than in the magnetic field free case, where an increase of up to 1% is observed for the largest chamber (Farmer 30013). The magnitude ofΔzfor all chambers decreases by 40% in a 1.5 T magnetic field with the sign ofΔzremains negative.Significance.In reference dosimetry, the change ofPgrin a magnetic field can be corrected by applying the magnetic field correction factorkQmsrBwhen the chamber is positioned with itsPrefat the depth of measurement. However, due to the depth dependence of the perturbation factors, it is more convenient to apply theΔz-shift during chamber positioning in relative dosimetry.


Subject(s)
Magnetic Fields , Radiometry , Monte Carlo Method , Photons
4.
Phys Med Biol ; 66(15)2021 07 19.
Article in English | MEDLINE | ID: mdl-34181591

ABSTRACT

The aim of the present work is to investigate the behavior of two diode-type detectors (PTW microDiamond 60019 and PTW microSilicon 60023) in transverse magnetic field under small field conditions. A formalism based on TRS 483 has been proposed serving as the framework for the application of these high-resolution detectors under these conditions. Measurements were performed at the National Metrology Institute of Germany (PTB, Braunschweig) using a research clinical linear accelerator facility. Quadratic fields corresponding to equivalent square field sizesSbetween 0.63 and 4.27 cm at the depth of measurement were used. The magnetic field strength was varied up to 1.4 T. Experimental results have been complemented with Monte Carlo simulations up to 1.5 T. Detailed simulations were performed to quantify the small field perturbation effects and the influence of detector components on the dose response. The does response of both detectors decreases by up to 10% at 1.5 T in the largest field size investigated. InS = 0.63 cm, this reduction at 1.5 T is only about half of that observed in field sizesS > 2 cm for both detectors. The results of the Monte Carlo simulations show agreement better than 1% for all investigated conditions. Due to normalization at the machine specific reference field, the resulting small field output correction factors for both detectors in magnetic fieldkQclin,QmsrBare smaller than those in the magnetic field-free case, where correction up to 6.2% at 1.5 T is required for the microSilicon in the smallest field size investigated. The volume-averaging effect of both detectors was shown to be nearly independent of the magnetic field. The influence of the enhanced-density components within the detectors has been identified as the major contributors to their behaviors in magnetic field. Nevertheless, the effect becomes weaker with decreasing field size that may be partially attributed to the deficiency of low energy secondary electrons originated from distant locations in small fields.


Subject(s)
Photons , Radiometry , Magnetic Fields , Monte Carlo Method , Particle Accelerators
5.
Med Phys ; 48(8): 4572-4585, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34032298

ABSTRACT

PURPOSE: The magnetic-field correction factors k B , Q of compact air-filled ionization chambers have been investigated experimentally and using Monte Carlo simulations up to 1.5 T. The role of the nonsensitive region within the air cavity and influence of the chamber construction on its dose response have been elucidated. MATERIALS AND METHODS: The PTW Semiflex 3D 31021, PinPoint 3D 31022, and Sun Nuclear Cooperation SNC125c chambers were studied. The k B , Q factors were measured at the experimental facility of the German National Metrology Institute (PTB) up to 1.4 T using a 6 MV photon beam. The chambers were positioned with the chamber axis perpendicular to the beam axis (radial); and parallel to the beam axis (axial). In both cases, the magnetic field was directed perpendicular to both the beam axis and chamber axis. Additionally, the sensitive volumes of these chambers have been experimentally determined using a focused proton microbeam and finite element method. Beside the simulations of k B , Q factors, detailed Monte Carlo technique has been applied to analyse the secondary electron fluence within the air cavity, that is, the number of secondary electrons and the average path length as a function of the magnetic field strength. RESULTS: A nonsensitive volume within the air cavity adjacent to the chamber stem for the PTW chambers has been identified from the microbeam measurements and FEM calculations. The dose response of the three investigated ionization chambers does not deviate by more than 4% from the field-free case within the range of magnetic fields studied in this work for both the radial and axial orientations. The simulated k B , Q for the fully guarded PTW chambers deviate by up to 6% if their sensitive volumes are not correctly considered during the simulations. After the implementation of the sensitive volume derived from the microbeam measurements, an agreement of better than 1% between the experimental and Monte Carlo k B , Q factors for all three chambers can be achieved. Detailed analysis reveals that the stem of the PTW chambers could give rise to a shielding effect reducing the number of secondary electrons entering the air cavity in the presence of magnetic field. However, the magnetic field dependence of their path length within the air cavity is shown to be weaker than for the SNC125c chamber, where the length of the air cavity is larger than its diameter. For this chamber it is shown that the number of electrons and their path lengths in the cavity depend stronger on the magnetic field. DISCUSSION AND CONCLUSION: For clinical measurements up to 1.5 T, the required k B , Q corrections of the three chambers could be kept within 3% in both the investigated chamber orientations. The results reiterate the importance of considering the sensitive volume of fully guarded chambers, even for the investigated compact chambers, in the Monte Carlo simulations of chamber response in magnetic field. The resulting magnetic field-dependent dose response has been demonstrated to depend on the chamber construction, such as the ratio between length and the diameter of the air cavity as well as the design of the chamber stem.


Subject(s)
Magnetic Fields , Radiometry , Electrons , Humans , Monte Carlo Method , Photons , Protons
6.
Med Phys ; 47(12): 6509-6518, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33074591

ABSTRACT

PURPOSE: This study aims to investigate the dose response of diode-type detectors in the presence of strong magnetic field and to understand the underlying mechanisms leading to the observed magnetic field dependence by close examinations on the role of the detector's design. MATERIALS AND METHODS: Three clinical diode-type detectors (PTW microSilicon type 60023, PTW microDiamond type 60019, and IBA Razor diode) have been studied. Measurements were performed at the linear accelerator experimental facility of the German National Metrology Institute (PTB, Braunschweig) with electromagnets up to 1.4 T to obtain the magnetic field correction factors k B , Q . The experimental results were compared to Monte Carlo simulations. Stepwise modifications of the detectors' models were performed to characterize the contributions of the structural components toward the magnetic field-dependent dose response. Additionally, systematic Monte Carlo study was conducted to elucidate the influence of the structural layers with varying density located above and beneath the detector's sensitive volume. RESULTS: The dose response of all investigated detectors decreases with magnetic field. As a result, the associated k B , Q factors increase by approximately 10% for the PTW detectors, and by 5% for the IBA Razor diode at 1.5 T. The sensitive volume itself was shown to cause negligible effect but the diode substrate with enhanced density situated directly below the sensitive volume contributes strongest to the observed magnetic field dependence. Systematic simulations revealed that k B , Q increases with magnetic field if the density of the structural layer located beneath the sensitive volume is higher than that of normal water (>1 g/cm3 ). In the case where the layer consists of low-density water (1.2 mg/cm3 ), k B , Q decreases with the magnetic field strength. On the contrary , if the structural layer with varying density is situated above the sensitive volume, the reversed effect could be observed. DISCUSSION AND CONCLUSION: The experimental and Monte Carlo results demonstrated that the dose response of the investigated diode-type detectors decreases in magnetic field. This observation can be generally attributed to the common construction of diode-type detectors, where structural components with enhanced density, for example the diode substrate, are situated below the sensitive volume. The results provide deeper insights into the behavior of clinical diode detectors when used in strong magnetic field.


Subject(s)
Particle Accelerators , Radiometry , Magnetic Fields , Monte Carlo Method , Photons
7.
Biomed Phys Eng Express ; 7(1)2020 12 03.
Article in English | MEDLINE | ID: mdl-34037536

ABSTRACT

The aim of this work is the dosimetric characterization of a plane parallel ionization chamber under defined beam setups at the CERN Linear Electron Accelerator for Research (CLEAR). A laser driven electron beam with energy of 200 MeV at two different field sizes of approximately 3.5 mm FWHM and approximately 7 mm FWHM were used at different pulse structures. Thereby the dose-per-pulse range varied between approximately 0.2 and 12 Gy per pulse. This range represents approximately conventional dose rate range beam conditions up to ultra-high dose rate (UHDR) beam conditions. The experiment was based on a water phantom which was integrated into the horizontal beamline and radiochromic films and an Advanced Markus ionization chamber was positioned in the water phantom. In addition, the experimental setup were modelled in the Monte Carlo simulation environment FLUKA. In a first step the radiochromic film measurements were used to verify the beamline setup. Depth dose distributions and dose profiles measured by radiochromic film were compared with Monte Carlo simulations to verify the experimental conditions. Second, the radiochromic films were used for reference dosimetry to characterize the ionization chamber. In particular, polarity effects and the ion collection efficiency of the ionization chamber were investigated for both field sizes and the complete dose rate range. As a result of the study, significant polarity effects and recombination loss of the ionization chamber were shown and characterized. However, the work shows that the behavior of the ionization chamber at the laser driven beam line at the CLEAR facility is comparable to classical high dose-per-pulse electron beams. This allows the use of ionization chambers on the CLEAR system and thus enables active dose measurement during the experiment. Compared to passive dose measurement with film, this is an important step forward in the experimental equipment of the facility.


Subject(s)
Electrons , Radiometry , Monte Carlo Method , Particle Accelerators , Water
8.
Med Phys ; 46(9): 4241-4245, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31292964

ABSTRACT

PURPOSE: The purpose of this work is the three-dimensional characterization of the active volumes of commercial solid-state dosimetry detectors. Detailed knowledge of the dimensions of the detector's active volume as well as the detector housing is of particular interest for small-field photon dosimetry. As shown in previous publications from different groups, the design of the detector housing influences the detector signal for small photon fields. Therefore, detailed knowledge of the active volume dimension and the surrounding materials form the basis for accurate Monte Carlo simulations of the detector. METHODS: A 10 MeV proton beam focused by the microbeam system of the Physikalisch-Technische Bundesanstalt was used to measure two-dimensional response maps of a synthetic diamond detector (microDiamond, type 60019, PTW Freiburg) and two silicon detectors (microSilicon, type 60023, PTW Freiburg and Diode E, type 60017, PTW Freiburg). In addition, the thickness of the active volume of the new microSilicon was measured using the method developed in a previous study. RESULTS: The analysis of the response maps leads to active area of 1.18 mm2 for the Diode E, 1.75 mm2 for the microSilicon, and 3.91 mm2 for the microDiamond detector. The thickness of the active volume of the microSilicon detector was determined to be (17.8 ± 2) µm. CONCLUSIONS: This study provides detailed geometrical data of the dosimetric active volume of three different solid-state detector types.


Subject(s)
Diamond , Protons , Radiometry/instrumentation , Silicon , Monte Carlo Method
9.
Med Phys ; 46(6): 2752-2759, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30972756

ABSTRACT

PURPOSE: Discrepancy between experimental and Monte Carlo simulated dose-response of the microDiamond (mD) detector (type 60019, PTW Freiburg, Germany) at small field sizes has been reported. In this work, the radiation-induced charge imbalance in the structural components of the detector has been investigated as the possible cause of this discrepancy. MATERIALS AND METHODS: Output ratio (OR) measurements have been performed using standard and modified versions of the mD detector at nominal field sizes from 6 mm × 6 mm to 40 mm × 40 mm. In the first modified mD detector (mD_reversed), the type of charge carriers collected is reversed by connecting the opposite contact to the electrometer. In the second modified mD detector (mD_shortened), the detector's contacts have been shortened. The third modified mD detector (mD_noChip) is the same as the standard version but the diamond chip with the sensitive volume has been removed. Output correction factors were calculated from the measured OR and simulated using the EGSnrc package. An adapted Monte Carlo user-code has been used to study the underlying mechanisms of the field size-dependent charge imbalance and to identify the detector's structural components contributing to this effect. RESULTS: At the smallest field size investigated, the OR measured using the standard mD detector is >3% higher than the OR obtained using the modified mD detector with reversed contact (mD_reversed). Combining the results obtained with the different versions of the detector, the OR have been corrected for the effect of radiation imbalance. The OR obtained using the modified mD detector with shortened contacts (mD_shortened) agree with the corrected OR, all showing an over-response of less than 2% at the field sizes investigated. The discrepancy between the experimental and simulated output correction factors has been eliminated after accounting for the effect of charge imbalance. DISCUSSIONS AND CONCLUSIONS: The role of radiation-induced charge imbalance on the dose-response of mD detector in small field dosimetry has been studied and quantified. It has been demonstrated that the effect is significant at small field sizes. Multiple methods were used to quantify the effect of charge imbalance with good agreement between Monte Carlo simulations and experimental results obtained with modified detectors. When this correction is applied to the Monte Carlo data, the discrepancy from experimental data is eliminated. Based on the detailed component analysis using an adapted Monte Carlo user-code, it has been demonstrated that the effect of charge imbalance can be minimized by modifying the design of the detector's contacts.


Subject(s)
Diamond , Radiometry/instrumentation , Monte Carlo Method
10.
Z Med Phys ; 29(4): 303-313, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30878324

ABSTRACT

INTRODUCTION: The aim of the present work is to perform dosimetric characterization of a novel vented PinPoint ionization chamber (PTW 31023, PTW-Freiburg, Germany). This chamber replaces the previous model (PTW 31014), where the diameter of the central electrode has been increased from 0.3 to 0.6mm and the guard ring has been redesigned. Correction factors for reference and non-reference measurement conditions were examined. MATERIALS AND METHODS: Measurements and calculations of the correction factors were performed according to the DIN 6800-2. The shifts of the effective point of measurement (EPOM) from the chamber's reference point were determined by comparison of the measured PDD with the reference curve obtained with a Roos chamber. Its lateral dose response functions, which act according to a mathematical convolution model as the convolution kernel transforming the dose profile D(x) to the measured signal M(x), have been approximated by Gaussian functions with standard deviation σ. Additionally, the saturation correction factors kS have been determined using different dose-per-pulse (DPP) values. The polarity effect correction factors kP were measured for field sizes from 5cm×5cm to 40cm×40cm. The influence of the diameter of the central electrode and the new guard ring on the beam quality correction factors kQ was studied by Monte-Carlo simulations. The non-reference condition correction factors kNR have been computed for 6MV photo beam by varying the field size and measurement depth. Comparisons on these aspects have been made to the previous model. RESULTS: The shifts of the EPOM from the reference point, Δz, are found to be -0.55 (6MV) and -0.56 (10MV) in the radial orientation and -0.97mm (6MV) and -0.91mm (10MV) in the axial orientation. All values of Δz have an uncertainty of 0.1mm. The σ values are 0.80mm (axial), 0.75mm (radial lateral) and 1.76mm (radial longitudinal) for 6MV photon beam and are 0.85mm (axial), 0.75mm (radial lateral) and 1.82mm (radial longitudinal) for 15MV photon beam. All σ values have an uncertainty of 0.05mm. The correction factor kS was found to be 1.0034±0.0009 for the PTW 31014 chamber and 1.0024±0.0007 for the PTW 31023 chamber at the highest DPP (0.827mGy) investigated in this study. Under reference conditions, the polarity effect correction factor kP of the PTW 31014 chamber is 1.0094 and 1.0116 for 6 and 10MV respectively, while the kP of the PTW 31023 chamber is 1.0005 and 1.0013 for 6 and 10MV respectively, all values have an uncertainty of 0.002. The kP of the new chamber also exhibits a weaker field size dependence. The kQ values of the PTW 31023 chamber are closer to unity than those of the PTW 31014 chamber due to the thicker central electrode and the new guard ring design. The kNR values of the PTW 31023 chamber for 6MV photon beam deviate by not more than 1% from unity for the conditions investigated. DISCUSSIONS: Correction factors associated with the new chamber required to perform reference and relative dose measurements have been determined according to the DIN-protocol. The correction factor kS of the new chamber is 0.1% smaller than that of the PTW 31014 at the highest DPP investigated. Under reference conditions, the correction factor kP of the PTW 31023 chamber is approximately 1% smaller than that of the PTW 31014 chamber for both energies used. The dosimetric characteristics of the new chamber investigated in this work have been demonstrated to fulfil the requirements of the TG-51 addendum for reference-class dosimeters at reference conditions.


Subject(s)
Photons , Radiometry/instrumentation , Radiometry/methods , Monte Carlo Method
11.
Z Med Phys ; 29(1): 39-48, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29880304

ABSTRACT

The frequently applied narrow and non-standard transverse dose profiles of intensity modulated photon-beam radiotherapy, lacking lateral secondary electron equilibrium, require the use of high-resolution dosimetry detectors, and small air-filled detectors are recommended as the reference detectors for cross-calibration of the high-resolution detectors. The present study focuses on the dosimetric properties of a novel cylindrical ionization chamber, the PTW Semiflex 3D 31021. The chamber's effective point of measurement was found to lie at (0.41±0.04) r downstream the tip of the inner surface of the spherical front wall in the axial orientation and (0.46±0.04) r upstream the chamber axis in the radial orientation. Due to its symmetrical design, the sigma values of its lateral dose response functions for all chamber's orientations are the same (2.10±0.05mm). The polarity correction factors obtained in this work do not exceed 0.1% and the saturation correction factor was below 1% up to a dose-per-pulse value of 0.956mGy. The radiation quality correction factor kQ of the chamber as a function of the tissue-phantom-ratio, TPR20,10, has been calculated by Monte Carlo simulation and has been determined experimentally at the German Metrology Institute (Physikalisch-Technische Bundesanstalt, PTB). The values of the non-reference condition correction factor kNR have been Monte-Carlo-calculated for use of the chamber at various depths and field sizes.


Subject(s)
Monte Carlo Method , Radiometry/instrumentation , Radiotherapy, Intensity-Modulated/instrumentation , Algorithms , Photons , Radiometry/methods , Radiotherapy, Intensity-Modulated/methods
12.
Med Phys ; 45(12): 5608-5621, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30294821

ABSTRACT

PURPOSE: The recent developments of compact air-filled ionization chambers for use in small photon beams have raised the needs to address the associated polarity effect. The polarity effect of five compact ionization chambers has been quantified at small field sizes. The origins of the polarity effect are studied experimentally and through Monte-Carlo simulations. For this purpose, the one-dimensional lateral dose-response functions were determined using positive and negative chamber's polarity. Monte-Carlo simulations were performed to study the underlying mechanism of the polarity effect by quantifying the charge imbalance in the collecting electrode and cable. METHODS: Five novel compact ionization chamber designs have been studied (PTW-Freiburg: Semiflex 3D 31021, PinPoint 3D 31022 and PinPoint 31023; IBA Dosimetry: Razor chamber CC01-G and Razor Nano-chamber CC003). Output ratios were measured down to a nominal field side length of 3 mm using both polarities to evaluate the polarity effect at different field sizes. The small field output correction factors were derived using a scintillator detector as reference. To identify the origins of the polarity effect, slit beam measurements were performed to obtain their lateral dose-response functions. All measurements were performed using three chamber orientations: axial, radial crossplane, and radial inplane. The chambers were modeled according to the manufacturers' blueprints using the Monte-Carlo package EGSnrc. The charge imbalance due to electrons entering and leaving the inner electrode and cable was studied using an adapted user-code. RESULTS: The output ratios obtained using all five chambers show field size-dependent polarity effects at small field sizes in the axial orientation, whereas no significant field size dependence of the polarity effect has been observed in the radial orientations. The chambers' lateral dose-response functions reveal that the radiation-induced charge imbalance in the inner electrode and cable is the main cause of the observed polarity effect at small field sizes. The effect is weakest for the largest PTW 31021 chamber but intensifies for smaller chambers with decreasing sensitive air volume. Consistent results have been obtained between Monte-Carlo simulations and measurement data. CONCLUSIONS: Awareness needs to be raised so that the polarity effect of novel compact ionization chambers is appropriately accounted for in small field dosimetry. The results in this work are useful to identify the magnitude of the polarity effect correction and to assist in the decisions on choosing the appropriate chambers and setups during measurements. The origins of the observed polarity effect have been elucidated using the chambers' lateral dose-response functions. The adapted Monte-Carlo user-code has been used to compute the radiation-induced charge imbalance in the chamber's components. It opens the possibility to study the chamber's design with the aim to minimize its polarity effect. Small field output correction factors computed according to TRS 483 have been reported for these investigated chambers.


Subject(s)
Radiometry/instrumentation , Monte Carlo Method
13.
Phys Med Biol ; 63(19): 195002, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30152785

ABSTRACT

The present study is concerned with clinical photon-beam dosimetry at radiotherapy units combined with magnetic resonance imaging devices. Due to the superposed constant magnetic field, the deflections of the secondary electron trajectories by the Lorentz force not only influence the 2D dose distribution, D(x,y), in water phantoms, but furthermore modify the secondary electron transport within the detectors and thereby the detectors' signal profiles, M(x,y), across the photon beams. This second effect can be represented by the lateral dose response function, K(x,y), the convolution kernel transforming D(x,y) into M(x,y) via the convolution M(x,y) = D(x,y) * K(x,y). The 1D functions K(x) of a set of commercial gas-filled and solid-state photon-beam detectors were experimentally determined using a slit beam geometry together with a constant, homogeneous magnetic field of up to 1.42 T. As predicted by a recent Monte-Carlo study (Looe et al 2017b Phys. Med. Biol. 62 5131-48), the functions K(x) of these detectors are shown experimentally to be distorted in magnetic field. For the larger Semiflex 3D 31021 chamber, the FWHM value of K(x) decreases from 4.9 mm for the field free (0 T) case to 4.8 mm in 0.35 T and 4.1 mm in 1.42 T magnetic field, whereas the FWHM value of the smaller PinPoint 3D 31022 chamber decreases from 2.8 mm for the field free case to 2.6 mm in 1.42 T magnetic field. The FWHM values of the semiconductor detectors are not modified in magnetic fields. Additionally, the symmetry of K(x) is shown to be distorted in magnetic field. Using a 10 mm wide field as example, the signal profiles, M(x), predicted by the measured and simulated K(x) by convolution with D(x) (measured with EBT3 film) agree within 3% of the maximum value to the measured M(x) for all detectors, except for the silicon diode detector if the measured K(x) was used, where deviations of around 5% were observed at the field border.


Subject(s)
Electrons , Magnetic Fields , Photons , Algorithms , Humans , Magnetic Resonance Imaging/instrumentation , Monte Carlo Method , Phantoms, Imaging , Radiometry/instrumentation , Radiometry/methods
14.
Phys Med Biol ; 63(7): 075013, 2018 03 29.
Article in English | MEDLINE | ID: mdl-29516870

ABSTRACT

This study aims at developing an optimization strategy for photon-beam dosimetry in magnetic fields using ionization chambers. Similar to the familiar case in the absence of a magnetic field, detectors should be selected under the criterion that their measured 2D signal profiles M(x,y) approximate the absorbed dose to water profiles D(x,y) as closely as possible. Since the conversion of D(x,y) into M(x,y) is known as the convolution with the 'lateral dose response function' K(x-ξ, y-η) of the detector, the ideal detector would be characterized by a vanishing magnetic field dependence of this convolution kernel (Looe et al 2017b Phys. Med. Biol. 62 5131-48). The idea of the present study is to find out, by Monte Carlo simulation of two commercial ionization chambers of different size, whether the smaller chamber dimensions would be instrumental to approach this aim. As typical examples, the lateral dose response functions in the presence and absence of a magnetic field have been Monte-Carlo modeled for the new commercial ionization chambers PTW 31021 ('Semiflex 3D', internal radius 2.4 mm) and PTW 31022 ('PinPoint 3D', internal radius 1.45 mm), which are both available with calibration factors. The Monte-Carlo model of the ionization chambers has been adjusted to account for the presence of the non-collecting part of the air volume near the guard ring. The Monte-Carlo results allow a comparison between the widths of the magnetic field dependent photon fluence response function K M(x-ξ, y-η) and of the lateral dose response function K(x-ξ, y-η) of the two chambers with the width of the dose deposition kernel K D(x-ξ, y-η). The simulated dose and chamber signal profiles show that in small photon fields and in the presence of a 1.5 T field the distortion of the chamber signal profile compared with the true dose profile is weakest for the smaller chamber. The dose responses of both chambers at large field size are shown to be altered by not more than 2% in magnetic fields up to 1.5 T for all three investigated chamber orientations.


Subject(s)
Algorithms , Magnetic Fields , Monte Carlo Method , Particle Accelerators/instrumentation , Photons , Radiometry/instrumentation , Humans , Radiometry/methods
15.
Z Med Phys ; 28(3): 224-235, 2018 Aug.
Article in English | MEDLINE | ID: mdl-28869164

ABSTRACT

The first aim of this study has been to extend the systematic experimental study of the field size dependence of the output factor correction for three micro-ionization chambers (PTW 31014, PTW 31022 and IBA Razor chamber), two silicon diodes (PTW 60017 and IBA Razor Diode) and the synthetic diamond detector microDiamond (PTW 60019) in a 6 MV photon beam down to an effective field side length of 2.6mm, and to summarize the present knowledge of this factor by treating it as a function of the dosimetric field size. In order to vary the dosimetric field size over this large range, output factors measurements were performed at source-to-surface distances of 60cm and 90cm. Since the output factors obtained with the organic scintillation detector Exradin W1 (Standard Imaging, Middleton, USA) at all field sizes closely agreed with those measured by EBT3 radiochromic films (ISP Corp, Wayne, USA), the scintillation detector served as the reference detector. The measured output correction factors reflect the influences of the volume averaging and density effects upon the uncorrected output factor values. In case of the microDiamond detector these opposing influences result in output factor correction values less than 1 for moderately small field sizes and larger than 1 for very small field sizes. Our results agree with most of the published experimental as well as Monte-Carlo simulated data within detector-specific limits of uncertainty. The dosimetric field side length has been identified as a reliable determinant of the output factor correction, and typical functional curve shapes of the field-size dependent output factor correction vs. dosimetric field side length have been associated with gas-filled, silicon diode and synthetic diamond detectors. The second aim of this study has been a novel, semi-empirical approach to calculate the field-size dependent output correction factors of small photon detectors by convolving film measured true dose profile data with measured lateral response functions of the detectors. To achieve this, the set of previously published 2D lateral dose response functions was complemented by those of the novel detectors PTW PinPoint chamber 31022 (PTW Freiburg, Freiburg, Germany), Razor chamber and Razor Diode (IBA Dosimetry, Schwarzenbruck, Germany). The output correction factors calculated from the lateral dose response functions closely fit with the directly measured output correction factors, thus supporting the latter by an independent method.


Subject(s)
Radiometry/instrumentation , Radiometry/methods , Computer Simulation , Monte Carlo Method , Photons , Radiation Dosimeters/standards , Radiometry/standards
16.
Z Med Phys ; 28(4): 293-302, 2018 Dec.
Article in English | MEDLINE | ID: mdl-28969957

ABSTRACT

The aim of this study has been to develop a two-step method of in-phantom dosimetry around a brachytherapy 192Ir photon source. The first step is to measure the absorbed dose rate to water with a calibrated ionization chamber under reference conditions, the second to cross-calibrate, under these conditions, small solid-state detectors such as silicon diodes, synthetic diamond or scintillation detectors suited for spatially resolved dose rate measurements at other, particularly at smaller source axis distances in the water phantom. This two-step approach constitutes a method for in-phantom dosimetry in brachytherapy, analogous to the "small calibration field" commonly used in teletherapy to provide the reference conditions for the cross-calibration of high-resolution detectors. Under reference conditions, all known corrections for radiation quality, volume averaging and position of the chamber's effective point of measurement (EPOM) have to be applied. The study is therefore particularly devoted to (1) the experimental determination of the position of the source axis, (2) a general formulation for the volume averaging correction factor of small ionization chambers and (3) the experimental determination of the EPOM positions for the PinPoint chamber 31014 and the 3D-PinPoint chamber PTW 31022 (both PTW Freiburg, Germany). The distance of 30mm from the source axis was chosen as the reference condition for cross calibrations. This concept is realized with the instrumentation available in a hospital, a scanning-type water phantom, a software package for small field dosimetry and detectors typically used in clinical routine dosimetry. The present development of a method of in-phantom dose measurement under 192Ir brachytherapy conditions was performed in recognition of the primary role of dose calculations, e.g. according to the AAPM TG43 recommendations. But in addition, the methodology tested here is paving a practicable way for the experimental check of typical dose values under clinical conditions, should the need arise.


Subject(s)
Brachytherapy/methods , Radiometry , Brachytherapy/instrumentation , Calibration , Humans , Radiometry/instrumentation , Radiotherapy Dosage
17.
Phys Med Biol ; 63(3): 035028, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29155691

ABSTRACT

The optical density (OD) of EBT3 radiochromic films (Ashland Specialty Ingredients, Bridgewater, NJ, USA) exposed to absorbed doses to water up to D = 20 Gy in magnetic fields of B = 0.35 and 1.42 T was measured in the three colour channels of an Epson Expression 10000XL flatbed scanner. A 7 cm wide water phantom with fixed film holder was placed between the pole shoes of a constant-current electromagnet with variable field strength and was irradiated by a 6 MV photon beam whose axis was directed at right angles with the field lines. The doses at the film position at water depth 5 cm were measured with a calibrated ionization chamber when the magnet was switched off and were converted to the doses in presence of the magnetic field via the monitor units and by a Monte Carlo-calculated correction accounting for the slight change of the depth dose curves in magnetic fields. In the presence of the 0.35 and 1.42 T fields small negative changes of the OD values at given absorbed doses to water occurred and just significantly exceeded the uncertainty margin given by the stochastic and the uncorrected systematic deviations. This change can be described by a +2.1% change of the dose values needed to produce a given optical density in the presence of a 1.42 T field. The thereby modified OD versus D function remained unchanged irrespective of whether the original short film side-the preference direction of the monomer crystals of the film-was directed parallel or orthogonal to the magnetic field. The 'orientation effect', the difference between the optical densities measured in the 'portrait' or 'landscape' film positions on the scanner bed caused by the reflection of polarised light in the scanner's mirror system, remained unaltered after EBT3 film exposure in magnetic fields. An independent optical bench investigation of EBT3 films exposed to doses of 10 and 20 Gy at 0.35 and 1.42 T showed that the direction of the electric vector of polarised light experiencing the largest transmission through EBT3 films remained unaltered after film exposure in the magnetic fields. The observed small modification of the OD versus D curve of the radiochromic film EBT3 in the range up to 20 Gy and 1.42 T, hardly exceeding the experimental uncertainty margin, numerically confirms other recent studies on EBT3 film. A stronger magnetic field effect had been observed with the previous product EBT2 exposed to 60Co gamma radiation at 0.35 T.


Subject(s)
Cobalt Radioisotopes , Film Dosimetry/instrumentation , Film Dosimetry/methods , Magnetic Fields , Monte Carlo Method , Phantoms, Imaging , Photons , Calibration , Gamma Rays , Humans , Radiation Dosage , Water/chemistry
18.
Phys Med Biol ; 63(1): 015001, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29148434

ABSTRACT

The well-known field-size dependent overresponse in small-field photon-beam dosimetry of solid-state detectors equipped with very thin sensitive volumes, such as the PTW microDiamond, cannot be caused by the photon and electron interactions within these sensitive layers because they are only a few micrometers thick. The alternative explanation is that their overresponse is caused by the combination of two effects, the modification of the secondary electron fluence profile (i) by a field size too small to warrant lateral secondary electron equilibrium and (ii) by the density-dependent electron ranges in the structural detector materials placed in front of or backing the sensitive layer. The present study aims at the numerical demonstration and visualization of this combined mechanism. The lateral fluence profiles of the secondary electrons hitting a 1 µm thick scoring layer were Monte-Carlo simulated by modelling their generation and transport in the upstream or downstream adjacent layers of thickness 0.6 mm and densities from 0.0012 to 3 g cm-3, whose atomic composition was constantly kept water-like. The scoring layer/adjacent layer sandwich was placed in an infinite water phantom irradiated by circular 60Co, 6 MV and 15 MV photon beams with diameters from 3 to 40 mm. The interpretation starts from the ideal case of lateral secondary electron equilibrium, where the Fano theorem excludes any density effect. If the field size is then reduced, electron tracks potentially originating from source points outside the field border will then be numerically 'cut away'. This geometrical effect reduces the secondary electron fluence at the field center, but the magnitude of this reduction also varies with the density-dependent electron ranges in the adjacent layers. This combined mechanism, which strongly depends on the photon spectrum, explains the field size and material density effect on the response of detectors with very thin sensitive layers used in small-field photon-beam dosimetry.


Subject(s)
Cobalt Radioisotopes , Electrons , Monte Carlo Method , Phantoms, Imaging , Photons , Radiometry/instrumentation , Radiometry/methods , Humans , Water/chemistry
19.
Phys Med Biol ; 62(12): 5131-5148, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28398218

ABSTRACT

The distortion of detector reading profiles across photon beams in the presence of magnetic fields is a developing subject of clinical photon-beam dosimetry. The underlying modification by the Lorentz force of a detector's lateral dose response function-the convolution kernel transforming the true cross-beam dose profile in water into the detector reading profile-is here studied for the first time. The three basic convolution kernels, the photon fluence response function, the dose deposition kernel, and the lateral dose response function, of wall-less cylindrical detectors filled with water of low, normal and enhanced density are shown by Monte Carlo simulation to be distorted in the prevailing direction of the Lorentz force. The asymmetric shape changes of these convolution kernels in a water medium and in magnetic fields of up to 1.5 T are confined to the lower millimetre range, and they depend on the photon beam quality, the magnetic flux density and the detector's density. The impact of this distortion on detector reading profiles is demonstrated using a narrow photon beam profile. For clinical applications it appears as favourable that the magnetic flux density dependent distortion of the lateral dose response function, as far as secondary electron transport is concerned, vanishes in the case of water-equivalent detectors of normal water density. By means of secondary electron history backtracing, the spatial distribution of the photon interactions giving rise either directly to secondary electrons or to scattered photons further downstream producing secondary electrons which contribute to the detector's signal, and their lateral shift due to the Lorentz force is elucidated. Electron history backtracing also serves to illustrate the correct treatment of the influences of the Lorentz force in the EGSnrc Monte Carlo code applied in this study.


Subject(s)
Magnetic Fields , Photons , Radiometry , Water , Algorithms , Electrons , Monte Carlo Method , Phantoms, Imaging , Photons/therapeutic use , Radiotherapy Planning, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...