Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(27): 36326-36343, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33694112

ABSTRACT

The effect of the incorporation of mineralizing Bacillus spp. on the characteristics of fluorescent organic matter (FDOM) in a recirculating aquaculture system (Nile tilapia-Stevia rebaudiana) was evaluated. EEM-PARAFAC analysis was used to determine the composition of the dissolved organic matter and to study its relationship with nitrogen transformation. The composition and antioxidant activity of Stevia leaves were used as indicators of the benefits of bacterial supplementation on nutrient absorption. Two systems were used, each consisting of a circular fish tank (1.7 m3) and six units of the nutrient film (0.18 m3). One system was supplemented with bacteria (BS), while the other was used as control (NBS). The inclusion of Bacillus spp. facilitated mineralization and the availability of total phosphorus (TP), K+, and nitrogen, and also controlled the total ammonia nitrogen (TAN) for 56 days without water exchange. FDOM was modeled by four components (3-humic-like, 1-protein-like), which were good indicators of the process of mineralization. The fluorescence intensity in the biofilter was significantly correlated with TP, K+, temperature, and the absorption coefficient a254. The fluorescence index (FI) was a good indicator of the process of nitrification. Plants from BS required 46.4% less NO3- and 47.8% less K+ compared to the control, and absorbed 45.1% more TP. BS-Stevia leaves produced 38.6% more reducing sugars, 28.6% more flavonoids, and 35.9% more glycosylated flavonoids than the control. The fish in the BS system reached a higher final weight than NBS, resulting in a 1 kg/m3 higher gross yield. Even so, it will be necessary to reduce the pH of the water to increase the antioxidant scavenging capacity of the plants.


Subject(s)
Bacillus , Stevia , Animals , Nitrogen , Phosphorus , Phytochemicals
2.
High Throughput ; 7(3)2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30181439

ABSTRACT

The present study aimed at determining the histamine production capacity of Gram (+) and Gram (-) bacteria isolated from Octopus maya, along with identifying the presence of amino acid decarboxylase genes. Of the total 80 psychrotrophic microorganisms, 32 strains were identified as histamine-forming bacteria. The recombinant DNA technique was used for genotypic identification of histidine (hdc), ornithine (odc), and lysine decarboxylases (ldc) genes. Thirty-two strains were able to produce 60⁻100 ppm in trypticase soy broth with 1.0% l-histidine after 6 h at 20 °C. NR6B showed 98% homology with Hafnia alvei. NR73 represented 18.8% of the total isolates and showed 98% homology with Enterobacter xianfengensis and Enterobacter cloacae. NR6A represented 6% of the total isolates, which were identified as Lactococcus sp. The hdc gen from NR6B showed 100% identity with hdc from Morganella morganii; ldc showed 97.7% identity with ldc from Citrobacter freundii. The Odc gene was detected only in NR73 and showed 100% identity with Enterobacter sp. All the isolated were identified as weak histamine⁻former. The ingestion of a food containing small amounts of histamine has little effect on humans; however, the formation of biogenic amines is often considered as an indicator of hygienic quality; this emphasizes the importance of improving good management practices and storage.

3.
Environ Sci Pollut Res Int ; 25(18): 17807-17819, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29675821

ABSTRACT

The objective of this study was to evaluate the potential of tomato plants to efficiently use the nitrogen (N) of a recirculation aquaponic system (RAS) and to evaluate the effects of foliar fertilization as a complement to the water nutrition on the growth of the two tomato cultivars. The significant effect of six macro- and seven micronutrients was evaluated on the plant growth and on the fruit yield. Two experiments were performed in a nutrient film aquaponic unit. The first experiment was designed to study the effects of foliar fertilization on the seedlings of two tomato cultivars Costoluto Genovese (CG) (Solanum lycopersicum L.) and Currant tomato (Ct) (Solanum pimpinellifolium) with 8% of weekly water exchange (WE8%-RAS). The foliar fertilizer was formulated with N restriction in the last 11 weeks (TF1). In the second experiment, two other foliar fertilization treatments (TF2 and TF3) were applied with a concentration of nutrients twice and triple that in TF1, but with a lower proportion of NPK ratio. These treatments were tested on the cultivar CG in a RAS with zero water exchange (WE0%-RAS). The data from the 1st experiment showed a positive effect of the foliar fertilization on the yield of both cultivars. The fertilization markedly influenced the dry matter weight of the CG; however, this effect was not observed in the Ct. The root length of both cultivars was positively influenced by the P content, whereas the plant height was affected by the excess of Co and S. According to the results from the 2nd experiment, the TF2 plants had the highest number of fruits with a high mean weight. The system was efficient in utilizing N from fish tank; the water K favored the yield of the CG fruit and the foliar K favored the growth of the TF2 plants. With a decrease in the foliar N, the CG plants were able to absorb 27.5% of the NO3- and 7.06% of total ammonia nitrogen from water. The absolute and relative growth rate of Nile tilapia was not affected by the rate of water exchange. Fulton's condition factor of the total length and weight curve indicated that fish from WE8%-RAS had wider bodies than the fish from WE0%-RAS at the same length range. Nitrate and P in the final effluent were lower than the maximum reference values allowed for the discharged water.


Subject(s)
Nitrogen/chemistry , Nutrients/analysis , Solanum lycopersicum/growth & development , Fertilizers , Fruit , Solanum lycopersicum/chemistry , Nutrients/chemistry , Solanum , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...