Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 193: 106262, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38035521

ABSTRACT

The interactions between microalgae and bacteria have recently emerged as key control factors which might contribute to a better understanding on how phytoplankton communities assemble and respond to environmental disturbances. We analyzed partial 16S rRNA and 18S rRNA genes from a total of 42 antibiotic bioassays, where phytoplankton growth was assessed in the presence or absence of an active bacterial community. A significant negative impact of bacteria was observed in 18 bioassays, a significant positive impact was detected in 5 of the cases, and a non-detectable effect occurred in 19 bioassays. Thalasiossira spp., Chlorophytes, Vibrionaceae and Alteromonadales were relatively more abundant in the samples where a positive effect of bacteria was observed compared to those where a negative impact was observed. Phytoplankton diversity was lower when bacteria negatively affect their growth than when the effect was beneficial. The phytoplankton-bacteria co-occurrence subnetwork included many significant Chlorophyta-Alteromonadales and Bacillariophyceae-Alteromonadales positive associations. Phytoplankton-bacteria co-exclusions were not detected in the network, which contrasts with the negative effect of bacteria on phytoplankton growth frequently detected in the bioassays, suggesting strong competitive interactions. Overall, this study adds strong evidence supporting the key role of phytoplankton-bacteria interactions in the microbial communities.


Subject(s)
Diatoms , Microbiota , Phytoplankton , RNA, Ribosomal, 16S/genetics , Bacteria
2.
Environ Microbiol ; 25(6): 1155-1173, 2023 06.
Article in English | MEDLINE | ID: mdl-36752021

ABSTRACT

Seabird guano enters coastal waters providing bioavailable substrates for microbial plankton, but their role in marine ecosystem functioning remains poorly understood. Two concentrations of the water soluble fraction (WSF) of gull guano were added to different natural microbial communities collected in surface waters from the Ría de Vigo (NW Spain) in spring, summer, and winter. Samples were incubated with or without antibiotics (to block bacterial activity) to test whether gull guano stimulated phytoplankton and bacterial growth, caused changes in taxonomic composition, and altered phytoplankton-bacteria interactions. Alteromonadales, Sphingobacteriales, Verrucomicrobia and diatoms were generally stimulated by guano. Chlorophyll a (Chl a) concentration and bacterial abundance significantly increased after additions independently of the initial ambient nutrient concentrations. Our study demonstrates, for the first time, that the addition of guano altered the phytoplankton-bacteria interaction index from neutral (i.e. phytoplankton growth was not affected by bacterial activity) to positive (i.e. phytoplankton growth was stimulated by bacterial activity) in the low-nutrient environment occurring in spring. In contrast, when environmental nutrient concentrations were high, the interaction index changed from positive to neutral after guano additions, suggesting the presence of some secondary metabolite in the guano that is needed for phytoplankton growth, which would otherwise be supplied by bacteria.


Subject(s)
Ecosystem , Phytoplankton , Animals , Phytoplankton/metabolism , Chlorophyll A/metabolism , Bacteria , Birds
SELECTION OF CITATIONS
SEARCH DETAIL
...