Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 105(6-1): 064604, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35854619

ABSTRACT

In the present work, a general model is developed for the electrokinetics and dielectric response of a concentrated salt-free colloid that takes into account the finite size of the counterions released by the particles to the solution. The effects associated with the counterion finite size have been addressed using a hard-sphere model approach elaborated by Carnahan and Starling [N. F. Carnahan and K. E. Starling, Equation of state for nonattracting rigid spheres, J. Chem. Phys. 51, 635 (1969)0021-960610.1063/1.1672048]. A more simple description of the finite size of the counterions based on that by Bikerman has also been considered for comparison. The studies carried out in this work include predictions on the effect of the finite counterion size on the equilibrium properties of the colloid and its electrokinetic and dielectric response when it is subjected to constant or alternating electric fields. The results show how important the counterion finite-size effects are for most of the electrokinetic and dielectric properties of highly charged and concentrated colloids, mainly for the static and dynamic electrophoretic mobilities. Furthermore, new insights are provided on the counterion condensation effect when counterions are allowed to have finite size. Focus is placed on the changes undergone by their concentration in the condensation layer for low-salt and highly charged colloids.

2.
Adv Colloid Interface Sci ; 299: 102539, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34610864

ABSTRACT

Because of their singular phenomenology, the so-called salt-free colloids constitute a special family of dispersed systems. Their main characteristic is that the dispersion medium ideally contains only the solvent and the ions compensating exactly the surface charge of the particles. These ions (often called released counterions) come into the solution when the surface groups responsible for the particles charge get ionized. An increasing effort is nowadays dedicated to rigorously compare theoretical model predictions for ideal salt-free suspensions, where only the released counterions are supposed to be present in solution, with appropriately devised experiments dealing with colloids as close as possible to the ideal salt-free ones. Of course, if the supporting solution is aqueous, the presence of atmospheric contamination and any other charged species different from the released counterions in the solution must be avoided. Because this is not an easy task, the presence of dissolved atmospheric CO2 and of H+ and OH- from water dissociation cannot be fully discarded in aqueous salt-free solutions (often denominated realistic in such case). Ultimately, at some point, the role of the released counterions will be comparable or even larger in highly charged concentrated colloids than that of added salts. These topics are covered in the present contribution. The model results are compared with experimental data on the dynamic mobility and dielectric dispersion of polystyrene spheres of various charges and sizes. As a rule, it is found that the model correctly predicts the significance of alpha and Maxwell-Wagner-O'Konski relaxations. Positions and amplitudes of such relaxations are well predicted, although it is necessary to assume that the released counterions are potassium or sodium instead of protons, otherwise the frequency spectra of experimental mobility and permittivity differ very significantly from those theoretically calculated. The proposed electrokinetic evaluation is an ideal tool for detecting in situ the possible contamination (or incomplete ion exchange of the latexes). A satisfactory agreement is found when potassium counterions are assumed to be in solution, mostly if one considers that the comparison is carried out without using any adjustable parameters.

3.
Phys Rev E ; 102(3-1): 032614, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33076032

ABSTRACT

Electrokinetics is the science of the physical phenomena appearing at the solid-liquid interface of dispersed particles subjected to external fields. Techniques based on electrokinetic phenomena constitute an important set of tools for the electrical characterization of colloids because of their sensitivity to the properties of particle-solution interfaces. Their rigorous description may require inclusion of the effects of finite size of chemical species in the theoretical models, and, particularly in the case of salt-free (no external salt added) aqueous colloids, also consideration of water dissociation and possible carbon dioxide contamination in the aqueous solution. A new ac electrokinetic model is presented for concentrated salt-free spherical colloids for arbitrary characteristics of the particles and aqueous solution, including finite-size effects of chemical species by appropriate modifications of the chemical reaction equations to include such non-ideal aspects. The numerical solution of the electrokinetic equations in an alternating electric field has also been carried out by using a realistic non-equilibrium scenario accounting for association-dissociation processes in the chemical reactions. The results demonstrate the importance of including finite-size effects in the electrokinetic response of the colloid, mainly at high frequencies of the electric field, and for highly charged colloids. Findings of previous models for pointlike ions or for ideal salt-free colloids including finite ion size effects are recovered with the present model, for the appropriate limiting conditions.

4.
Phys Chem Chem Phys ; 20(7): 5012-5020, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29388640

ABSTRACT

The rapid and reversible ionic electrosorption in the electrical double layers (EDLs) of moderately charged micropores in contact with a solution is the main concept underlying capacitive energy and desalination devices. For the usual operating conditions, the ion concentration is large enough for the confinement of ions to play an important role in their distribution in the EDL. On the other hand, although most laboratory experiments have been carried out with simple salt solutions, realistic applications require a proper analysis of the effect of the different ionic species existing in natural waters. Here we focus on the role of multiionic solutions on the double layer structure. For this purpose, a model is presented in which the EDL overlap and the existence of a Stern layer are considered. It is also taken into account that the ions can be tightly packed by using the Carnahan-Starling model. This model is applied to analyze the structure of the EDL with multiionic solutions containing divalent ions. The predictions of this model are found to largely differ from those of the better known Bikerman equation, and are more realistic. It is demonstrated that the presence of tiny amounts of divalent ions in the bulk is enough to dominate the EDL behavior, and hence, its capacitance, energy storage, and desalination properties.

5.
J Colloid Interface Sci ; 502: 112-121, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28478218

ABSTRACT

In this paper we present experimental results on the electrokinetic behavior of planar gibbsite particles in concentrated suspensions. The dc electrophoretic mobility measurements are in this case of little significance, as they are scarcely informative. In the present investigation, we show that the dielectric dispersion and dynamic electrophoresis can in contrast provide such information. The complicating factors are of course the non-spherical shape and the finite particle concentration, as no complete theory of these phenomena exists for such systems. We propose to use first of all a model of dynamic electrophoresis of spheroids in which the effect of volume fraction is considered by means of an approximate theory previously obtained for spheres, based on the evaluation of electrical and hydrodynamic interactions between particles. In addition, the role of volume fraction on the high frequency inertial relaxation is also ascertained and used to obtain a volume fraction-independent radius of the gibbsite spheroids. A similar approach is used for the evaluation of dielectric dispersion data. Both the dynamic mobility and dielectric constant dependencies on frequency were obtained for gibbsite suspensions of different volume fractions in 0.5mMKCl. The theoretical treatments elaborated were applied to these data, and a coherent picture of the geometrical and electrical characteristics of the particles was obtained.

6.
J Colloid Interface Sci ; 436: 132-7, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25268816

ABSTRACT

In this work we report on the permittivity of suspensions of elongated goethite particles in silicone oils of different viscosities. In spite of the low conductivity of the systems, the electrode polarization is significant. To correct this phenomenon, the procedure chosen is the one called logarithmic derivative of the real part of the permittivity, and it proves to efficiently reduce the effect of electrodes to the extent that the spectra of pure liquids are flat in the accessible frequency range (20 Hz-1 MHz). In our suspensions, we observe the presence of a dielectric relaxation for frequencies in the range 4-40 kHz. In principle, such relaxations might be ascribed to the Maxwell-Wagner (MW) polarization. However, it is found that both the characteristic frequency and the relaxation amplitude of the suspensions increase with volume fraction, something unexpected for an MW relaxation. Such discrepancy can be explained by considering the Frenkel-Trukhan model, which reproduces the Maxwell-Wagner results in conditions of thin electrical double layers (which it is not our case). An excellent agreement is found between our data and the model predictions, using only the particle surface charge as a parameter.

7.
Phys Chem Chem Phys ; 16(46): 25241-6, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25348814

ABSTRACT

In this work we present a method for the production of clean, renewable electrical energy from the exchange of solutions with different salinities. Activated carbon films are coated with negatively or positively charged polyelectrolytes using well-established adsorption methods. When two oppositely charged coated films are placed in contact with an ionic solution, the potential difference between them will be equal to the difference between their Donnan potentials, and hence, energy can be extracted by building an electrochemical cell with such electrodes. A model is elaborated on the operation of the cell, based on the electrokinetic theory of soft particles. All the features of the model are experimentally reproduced, although a small quantitative difference concerning the maximum open-circuit voltage is found, suggesting that the coating is the key point to improve the efficiency. In the experimental conditions used, we obtain a power of 12.1 mW m(-2). Overall, the method proves to be a fruitful and simple approach to salinity-gradient energy production.

8.
Mater Sci Eng C Mater Biol Appl ; 33(3): 1183-92, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23827558

ABSTRACT

Gemcitabine is a chemotherapy drug used in different carcinomas, although because it displays a short biological half-life, its plasmatic levels can quickly drop below the effective threshold. Nanoparticle-based drug delivery systems can provide an alternative approach for regulating the bioavailability of this and most other anticancer drugs. In this work we describe a new model of composite nanoparticles consisting of a core of magnetite nanoparticles, coated with successive layers of high molecular weight poly(acrylic acid) and chitosan, and a final layer of folic acid. The possibility of using these self-assembled nanostructures for gemcitabine vehiculization is explored. First, the surface charge of the composite particles is studied by means of electrophoretic mobility measurements as a function of pH for poly(acrylic acid) (carbopol) of different molecular weights. The adsorption of folic acid, aimed at increasing the chances of the particles to pass the cell membrane, is followed up by optical absorbance measurements, which were also employed for drug adsorption determinations. As a main result, it is shown that gemcitabine adsorbs onto the surface of chitosan/carbopol-coated magnetite nanoparticles. In vitro experiments show that the functionalized magnetic nanoparticles are able to deliver the drug to the nuclei of liver, colon and breast tumor cells.


Subject(s)
Antineoplastic Agents/pharmacology , Chemical Phenomena , Deoxycytidine/analogs & derivatives , Drug Delivery Systems , Magnetite Nanoparticles/chemistry , Neoplasms/drug therapy , Acrylic Resins/chemistry , Adsorption , Cell Line, Tumor , Cell Survival/drug effects , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Electrophoresis , Folic Acid/analysis , Humans , Hydrogen-Ion Concentration/drug effects , Magnetite Nanoparticles/ultrastructure , Microscopy, Confocal , Optical Imaging , Particle Size , Gemcitabine
9.
J Colloid Interface Sci ; 402: 340-9, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23643252

ABSTRACT

Capacitive energy extraction based on double layer expansion (CDLE) is the name of a new method devised for extracting energy from the exchange of fresh and salty water in porous electrodes. It is based on the change of the capacitance of electrical double layers (EDLs) at the electrode/solution interface when the concentration of the bulk electrolyte solution is modified. The use of porous electrodes provides huge amounts of surface area, but given the typically small pore size, the curvature of the interface and EDL overlap should affect the final result. This is the first aspect dealt with in this contribution: we envisage the electrode as a swarm of spherical particles, and from the knowledge of their EDL structure, we evaluate the stored charge, the differential capacitance and the extracted energy per CDLE cycle. In all cases, different pore radii and particle sizes and possible EDL overlap are taken into account. The second aspect is the consideration of finite ion size instead of the usual point-like ion model: given the size of the pores and the relatively high potentials that can be applied to the electrode, excluded volume effects can have a significant role. We find an extremely strong effect: the double layer capacitance is maximum for a certain value of the surface potential. This is a consequence of the limited ionic concentration at the particle-solution interface imposed by the finite size of ions, and leads to the presence of two potential ranges: for low electric potentials the capacitance increases with the ionic strength, while for large potentials we find the opposite trend. The consequences of these facts on the possibility of net energy extraction from porous electrodes, upon changing the solution in contact with them, are evaluated.

10.
J Colloid Interface Sci ; 377(1): 153-9, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22520211

ABSTRACT

In this work, we investigate the stability and redispersibility of magnetorheological fluids (MRFs). These are disperse systems where the solid is constituted by ferro- or ferri-magnetic microparticles. Upon the application of external magnetic field, they experience rapid and reversible increases in yield stress and viscosity. The problem considered here is first of all the determination of their stability against sedimentation, an essential issue in their practical application. Although this problem is typically faced through the addition of thixotropic agents to the liquid medium, in this work, we propose the investigation of the effect of magnetic nanoparticles addition, so that the dispersion medium is in reality a ferrofluid. It is found that a volume fraction of nanoparticles not higher than 3% is enough to provide a long-lasting stabilization to MRFs containing above 30% iron microparticles. In the, in fact unavoidable, event of settling, the important point is the ease of redispersion of the sediment. This is indirectly evaluated in the present investigation by measuring the penetration force in the suspension, using a standard hardness needle. Again, it is found that the nanoparticles addition produces soft sediments by avoiding short-range attractions between the large iron particles. Finally, the performance of the designed MRFs is evaluated by obtaining their steady-state rheograms for different volume fractions of magnetite and different magnetic field strengths. The yield stress is found to be strongly field-dependent, and it can achieve the high values expected in standard magnetorheological fluids but with improved stability and redispersibility.

11.
Rev Sci Instrum ; 82(7): 073906, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21806198

ABSTRACT

In this paper we describe an experimental setup for the automatic determination of the sedimentation behavior of magnetic suspensions (i.e., disperse systems consisting on ferro- or ferri-magnetic particles in a suitable fluid) of arbitrary volume fraction of solids. The device is based on the evaluation of the inductance of a thin coil surrounding the test tube containing the sample. The inductance L is evaluated from the measurement of the resonant frequency of a parallel LC circuit constructed with the coil and a capacitor of known capacitance. The coil can be moved vertically along the tube at specified steps and time intervals, and from the knowledge of L as a function of the vertical position and time, one can get an image of the particle concentration profiles at given instants of time. The performance of the device is tested against suspensions of spherical iron particles in the micrometer size range dispersed in silicone oil, with various initial concentrations of solids. The sedimentation profiles are then compared with the predictions of existing models for the settling of disperse systems of non-interacting particles.

12.
Langmuir ; 26(22): 16833-40, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-20939556

ABSTRACT

An investigation is described on the electric-field-induced structures in colloidal dispersions. Both rheological determinations and direct microscopic observations are used with that aim. The starting point of this study is the so-called electrorheological (ER) effect, consisting of the mechanical reinforcing of a fluid or suspension due to formation of chains of molecules or particles after being polarized by the action of the field. One macroscopic manifestation of this phenomenon is the transformation of the fluid from a typically Newtonian behavior to a viscoelastic material, with finite yield stress and high elastic modulus. The systems investigated were suspensions of elongated goethite (ß-FeOOH) particles in silicone oils with varying amounts of silica nanoparticles. The results showed the rather unusual behavior known as "negative ER effect", which can be best described by saying that the application of an electric field reduces the yield stress and the elastic modulus, that is, produces destruction of structures rather than their build up. The negative behavior is also found for suspensions of other inorganic powders, including hematite and quartz. On the contrary, the usual positive ER response is found for suspensions of cellulose and montmorillonite clay. The same happens if goethite suspensions are prepared in high volume fractions, high-viscosity fluids, or both. All of the results found are compatible with the so-called interfacial model of electrorheology: the reduction of the yield stress of goethite suspensions when the applied field is high enough is the consequence of particle migration toward the electrodes because of charge injection and subsequent electrophoresis. The migration leaves the gap between the electrodes devoid of particles and explains the decrease in yield stress. The addition of silica nanoparticles contributes to reduce the strength of this effect by hindering the charging and making it necessary to increase the field strength to observe the negative effect. The model appears to also be applicable to cellulose, although the positive response found for such particles is explained by their large size: larger diameters bring about larger attraction forces between particles, leading to a tendency to produce strong aggregates. This is likely to occur in suspensions of colloids which, because of their relatively high electrical conductivity, tend to acquire charge even in such nonpolar liquids as silicone oils.

13.
J Colloid Interface Sci ; 347(1): 74-8, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20362999

ABSTRACT

In this work an investigation is described on the use of organically modified montmorillonite clay particles as stabilizers of bioplastic films based on xylan. With the aim of facilitating the incorporation of the nanoparticles to the films, the former were treated with a non-ionic surfactant, inulin. In order to evaluate the possible role of electrostatic interactions in the formation of montmorillonite/xylan complexes, an exhaustive electrokinetic characterization of the modified montmorillonite was carried out. Because montmorillonite has been modified by adsorption of the cationic surfactant DSDMAC, the electrophoretic mobility of montmorillonite in the absence of inulin is positive in a wide range of concentration of NaCl and CaCl(2). On the contrary, addition of KBr provokes a charge inversion when the salt concentration is around 0.05 M, suggesting adsorption of Br(-) ions. In the presence of inulin, the positive electrophoretic mobility decreases with the concentration of this surfactant, and this can be explained by assuming that inulin adsorption is accompanied by simultaneous DSDMAC desorption, eventually producing charge inversion, particularly in the presence of bromide ions. A thorough characterization of the wettability of the xylan films demonstrated that it is dominated by acid-base interactions and that incorporation of inulin-coated montmorillonite leads to a considerable reduction of the hydrophilic character of the films.


Subject(s)
Bentonite/chemistry , Polysaccharides/chemistry , Absorption , Bromides/chemistry , Calcium Chloride/chemistry , Electrophoresis , Formamides/chemistry , Hydrocarbons, Iodinated/chemistry , Hydrogen-Ion Concentration , Inulin/chemistry , Osmolar Concentration , Potassium Compounds/chemistry , Quaternary Ammonium Compounds/chemistry , Sodium Chloride/chemistry , Static Electricity , Surface Properties , Surface-Active Agents/chemistry , Water/chemistry , Xylans/chemistry
14.
J Colloid Interface Sci ; 344(1): 144-9, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20096847

ABSTRACT

The synthesis of nanoparticles consisting of a magnetite core coated with one or more layers of amino acid (L-arginine, L-lysine, glycine, and L-glutamine) is described in this paper. For all the amino acids it is found that adsorption increases with concentration in solution in the range 0.5-10 mg/mL. The adsorption, however, differs substantially from one amino acid to another, depending on the length of the hydrocarbon chain and the polarity and charge of the side group. Thus, for given concentration and pH, adsorption is found to increase in the order L-arginine < L-lysine < L-glutamine < glycine. This order corresponds roughly to amino acids with decreasing chain length; in addition, the presence of the less polarizable guanidine group in the arginine molecule may explain why this amino acid is slightly less adsorbed than lysine. The pH dependence of the adsorption of each amino acid is reasonably explained considering the surface charge of magnetite and the charge of the amino acid molecules for different pHs, indicating a significant role of electrostatics in adsorption. This is further checked by means of determinations of the electrophoretic mobility of amino acid-coated magnetite as a function of pH: the results indicate a shift of the isoelectric point of the raw magnetite toward more basic pHs, an indication of adsorption of positive species, as confirmed by the tendency of the mobility of amino acid-coated magnetite toward more positive values below neutral pH. The electrophoretic mobility of coated particles was also measured as a function of the concentration of amino acid, and it was found that for low concentrations the four amino acids provoke charge inversion and overcharging of the magnetite surface at pH 6. Finally, the dependence of the electrophoretic mobility on the ionic strength indicated that from an electrophoretic point of view, the functionalized magnetite-amino acid particles do not behave as soft particles, and that the amino acid coating should be very compact.


Subject(s)
Amino Acids/chemistry , Ferrosoferric Oxide/chemistry , Nanoparticles/chemistry , Adsorption , Electrophoresis , Hydrogen-Ion Concentration , Osmolar Concentration
15.
J Colloid Interface Sci ; 343(2): 564-73, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20044095

ABSTRACT

This paper describes an investigation on the electric permittivity of concentrated suspensions of non-spherical particles, specifically prolate spheroids. It is first discussed how the determination of the frequency (omega) dependence of the electric permittivity (a phenomenon traditionally known as LFDD or low-frequency dielectric dispersion) can provide ample information on the properties of the dispersed material (shape, size, state of aggregation, conductivity) and of its interface with the (typically aqueous) medium. The basic quantities are the strength and frequency dependence of the dipole moment induced by the applied field, and its dimensionless counterpart, the dipole coefficient, C(*)(omega). It is explicitly shown how the (complex) relative permittivity of the suspension, epsilon(r)(*)(omega), can be calculated from it. Two theoretical models on the polarizability of spheroidal colloidal particles will be used as theoretical starting point; one of them (Model I) explicitly considers two relaxations of the permittivity, each associated to one of the particle axes. The other (Model II) is a semi-analytical theory that yields an LFDD practically independent of the axial ratio of the particles. Both models are aimed to be used if the suspensions are dilute (low volume fraction of solids, phi), and here they are generalized to concentrated systems by means of a previously published approximate evaluation of the permittivity of concentrated suspensions. Experiments are performed in the 1 kHz-1 MHz frequency range on suspensions of elongated goethite particles; the effects of ionic strength, pH, and volume fraction are investigated, and the two models are fitted to the data. In reality, taking into account that the particles are non-uniformly charged (a fact that contributes to their instability), two zeta potentials (roughly representing the lateral surface and the tip of the spheroid) are used as parameters. The results indicate that, when experimental conditions are optimal (high ionic strength and low zeta potential), the suspensions do indeed display two relaxations, that we ascribe to the long axis (and to flocs likely present in suspension) and to the short one. The permittivity increases with ionic strength, a result found with other systems, and compatible with a zeta potential that, on the average, decreases with ionic strength, an equally well known result, consequence of electric double layer compression. Another reasonable finding is the increase of estimated average dimensions and the decrease of electrokinetic potentials when the pH is close to the isoelectric point of goethite (around pH 9). The increase in volume fraction, finally, produces an overall increase in the permittivity, and the approximate model used for the evaluation of volume fraction variations can describe properly these effects, with basically constant zeta potentials and dimensions.

16.
J Colloid Interface Sci ; 343(1): 350-8, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20018295

ABSTRACT

Many practical uses of electroacoustic methods for the characterization of disperse systems involve concentrated and/or polydisperse suspensions. While the effects of particle concentration have been well described experimentally and theoretically, similar studies considering a wide size distribution of the dispersed particles are lacking. This is not a minor point, as these methods are based on the action of alternating fields (either electric or acoustic) on the systems and the characteristic frequencies and amplitudes are largely determined by the particle geometry. In this work, we first evaluate the effect, on the dynamic (or ac) mobility, of changing the size distribution in the suspension. It is found that the inertia (also called hydrodynamic) relaxation of the mobility is shifted toward lower frequencies, and that the overall mobility spectrum is smoothed when the size polydispersity of the suspension increases. The results theoretically obtained are subsequently used for fitting experimental mobility data corresponding to two alumina samples, in a wide range of particle concentrations and ionic strengths. It is demonstrated that a complete model accounting for polydispersity leads to a better description of the results; very significantly, this can be done by using the zeta potential as the only fitting parameter, and forcing this parameter to be determined only by the ionic strength, and not by the volume fraction.

17.
Langmuir ; 25(20): 12040-7, 2009 Oct 20.
Article in English | MEDLINE | ID: mdl-19764739

ABSTRACT

In this article, a cell model is used for the evaluation of the alternating current (ac) mobility (dynamic mobility) of spherical particles in suspensions of arbitrary volume fractions of solids. The main subject is the consideration of the role of the electrical conductivity (SLC or K(sigmai)) of the stagnant layer (SL) on the mobility. It is assumed that the total surface conductivity (K(sigma)), resulting from both K(sigmai) and the diffuse layer conductivity (K(sigmad)), is constant in the cases considered and that it is the K(sigmai)-K(sigmad) balance that determines the SL effects. We first explore the effect of K(sigmai) on the frequency dependence of the dynamic mobility. It is found that the mobility decreases on average, for any frequency, when K(sigmai) increases. This is a consequence of stagnancy: ions in the SL, although contributing to the surface conductivity, do not drag liquid with them when they migrate and do not contribute to electro-osmotic flow or, equivalently, to electrophoresis. Three relaxations are observed in the mobility-frequency spectrum: inertial (the particle and liquid motions are hindered), Maxwell-Wagner-O'Konski (ions in the double layer cannot follow the field oscillations and can move only over a distance much smaller that the diffuse layer thickness), and the so-called alpha or concentration polarization process (the ions can rearrange around the particle, but they cannot form the electrolyte concentration field that appears at low frequency). Whereas the first two relaxations are little affected by K(sigmai), the alpha process undergoes significant changes. Thus, the mobility increases with frequency around the alpha relaxation region if K(sigmai) is negligible, but it decreases with frequency in the same interval if K(sigmai) is finite. With the aim of explaining this behavior, we calculate the capillary osmosis velocity field that is the fluid flow provoked by the concentration gradient around the particle. The calculations presented demonstrate that the velocity is reduced (for each frequency and position) when the SLC is raised. It is proposed that such a decrease adds to that due to the changes in the induced dipole moment of the particle, also favoring a decrease in the mobility. These tendencies are also present when the volume fraction of solids, phi, is modified, although higher phi values somewhat hide the effect of K(sigmai), as in fact observed with all features of electrokinetics associated with the phenomenon of concentration polarization.

18.
Langmuir ; 25(18): 10587-94, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19572511

ABSTRACT

In this work we consider how the spheroidal shape of colloidal particles and their concentration in suspension influence their electrokinetic properties in alternating (ac) electric fields, in particular, their electrophoretic mobility, traditionally known as dynamic mobility in the case of ac fields. Elaboration of a formula for the mobility is based on two previous models related to the electrokinetic response of spheroids in dilute suspensions, completed by means of an approximate formula to account for the finite concentration of particles. At the end, semianalytical formulas have been obtained in the form of the classical Helmholtz-Smoluchowski equation for the mobility with three frequency-dependent factors, each dealing with inertia relaxation, electric double layer polarization and volume fraction effects. The two resulting expressions differ basically in their consideration of double layer polarization processes, as one considers only Maxwell-Wagner-O'Konski polarization (related to the mismatch between the conductivities of the particles plus their double layers and the liquid medium), and the other also includes the concentration polarization effect. Since in the frequency range typically used in dynamic mobility measurements the latter polarization has already relaxed, both models are capable of accounting for the dynamic mobility data experimentally obtained on elongated goethite particles in the 1-18 MHz frequency range. Results are presented concerning the effects of volume fraction, ionic strength, and pH, and they indicate that the models are good descriptions of the electrokinetics of these systems, and that dynamic mobility is very sensitive not only to the zeta potential of the particles, but also to their concentration, shape, and average size, and to the stability of the suspensions. The effects of ionic strength and pH on the dynamic mobility are very well captured by both models, and a consistent description of the dimensions and zeta potentials of the particles is reached. Increasing the volume fraction of the suspensions produces mobility variations that are only partially described by the theoretical calculations due to the likely flocculation of the particles, mainly associated with the fact that goethite particles are not homogeneously charged, with attraction between positive and negative patches being possible.

19.
Eur Phys J E Soft Matter ; 29(1): 87-94, 2009 May.
Article in English | MEDLINE | ID: mdl-19430949

ABSTRACT

In this paper we describe the magnetorheological behavior of aqueous suspensions consisting of magnetite particles of two size populations, in the micrometer and nanometer scale, respectively. Previous works on the magnetorheology of oil-based fluids demonstrated that the addition of nanoparticles has a very significant effect on the intensity of the magnetorheological effect. The present contribution confirms such results in the case of aqueous fluids, based on the dependence of the yield stress and the viscosity of the bimodal suspensions on both the composition of the mixtures and the magnetic field strength. It is demonstrated that for a given concentration of micrometer particles, increasing the amount of nanometer magnetite provokes a clear enhancement in the yield stress for all the magnetic fields applied. This is proposed to be due to the formation of heterogeneous aggregates that improve the stability of the suspensions and ease the building of well-arranged field-induced structures. The behavior of both the yield stress and the post-yield viscosity agrees better with the predictions of standard chain models when the relative proportion of both types of particles confers optimum stability to the bimodal dispersions.

20.
J Colloid Interface Sci ; 324(1-2): 199-204, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18533174

ABSTRACT

In this paper we describe the magnetorheological (MR) behavior of aqueous suspensions consisting of magnetite particles stabilized by poly(acrylic acid) polymers (PAA). A previous work on the colloidal stability of the same systems for different pH values and polymer concentrations demonstrated that the addition of PAA polymers has a very significant effect on the stability. In the present contribution, we study the MR effect of the suspensions stabilized by two different commercial polymers, as a function of pH, magnetic field strength and magnetite volume fraction. All the results are discussed in terms of the interfacial properties of the systems. It is demonstrated that for a given concentration of micrometer particles, the rheological response strongly depends on pH, on the volume fraction of magnetite particles, on the type of polymer added for increasing the stability and on the magnetic field strength. Changing the polymer used provokes clear rheological differences for the same sample conditions (field strength, volume fraction and pH). This is suggested to be due to the hydrophobic/hydrophilic balance of the polymer affecting the magnetic field ability to form magnetic structures by aggregation of the magnetized particles. The results are compared to the predictions of the so-called standard chain model, based on the assumption that the MR effect is the result of the balance between the magnetic interactions (tending to establish some degree of order in the suspension by formation of particle chains in the direction of the field) and hydrodynamic ones (tending to destroy the formed structures by viscous stress on the chains). It is found that the behavior of the yield stress does not agree well with the predictions of the model when the relative proportion of both particle and polymer confers optimum stability to the dispersions. This is likely due to the fact that the presence of the stabilizing polyelectrolyte provokes that the magnetic field is not as effective in structuring the suspension as deduced from the chain model.


Subject(s)
Acrylic Resins/chemistry , Ferrosoferric Oxide/chemistry , Magnetics , Rheology , Suspensions , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...