Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Front Vet Sci ; 10: 1229071, 2023.
Article in English | MEDLINE | ID: mdl-37711433

ABSTRACT

Introduction: The 2022-2023 highly pathogenic avian influenza (HPAI) H5N1 outbreak in the United States (U.S.) is the largest and most costly animal health event in U.S. history. Approximately 70% of commercial farms affected during this outbreak have been turkey farms. Methods: We conducted a case-control study to identify potential risk factors for introduction of HPAI virus onto commercial meat turkey operations. Data were collected from 66 case farms and 59 control farms in 12 states. Univariate and multivariable analyses were conducted to compare management and biosecurity factors on case and control farms. Results: Factors associated with increased risk of infection included being in an existing control zone, having both brooders and growers, having toms, seeing wild waterfowl or shorebirds in the closest field, and using rendering for dead bird disposal. Protective factors included having a restroom facility, including portable, available to crews that visit the farm and workers having access and using a shower at least some of the time when entering a specified barn. Discussion: Study results provide a better understanding of risk factors for HPAI infection and can be used to inform prevention and control measures for HPAI on U.S. turkey farms.

2.
Front Vet Sci ; 10: 1205485, 2023.
Article in English | MEDLINE | ID: mdl-37662981

ABSTRACT

Introduction: An incursion of foot-and-mouth disease (FMD) into the United States remains a concern of high importance and would have devastating socioeconomic impacts to the livestock and associated industries. This highly transmissible and infectious disease poses continual risk for introduction into the United States (US), due to the legal and illegal global movement of people, animals, and animal products. While stamping out has been shown to effectively control FMD, depopulation of large cattle feedlots (>50,000 head) presents a number of challenges for responders due to the resources required to depopulate and dispose of large numbers of animals in a timely and effective manner. Methods: However, evaluating alternative strategies for FMD control on large feedlots requires a detailed within-farm modeling approach, which can account for the unique structure of these operations. To address this, we developed a single feedlot, within-farm spread model using a novel configuration within the InterSpread Plus (ISP) framework. As proof of concept we designed six scenarios: (i) depopulation - the complete depopulation of the feedlot, (ii) burn-through - a managed "burn-through" where the virus is allowed to spread through the feedlot and only movement restriction and biosecurity are implemented, (iii) firebreak-NV - targeted depopulation of infected pens and adjacent pens without vaccination; (iv) firebreak - targeted depopulation of infected pens and adjacent pens with vaccination of remaining pens; (v) harvest-NV - selective harvest of pens where a 100% movement restriction is applied for 28-30 days, then pens are set for selection to be sent to slaughter, while allowing a controlled "burn-through" without vaccination; and (vi) harvest - selective harvest of pens with vaccination. Results: Overall, the burn-through scenario (ii) had the shortest epidemic duration (31d (30, 33)) median (25th, 75th percentiles), while the firebreak scenario (iv) had the longest (47d (38,55)). Additionally, we found that scenarios implementing depopulation delayed the peak day of infection and reduced the total number of pens infected compared to non-depopulation scenarios. Discussion: This novel configuration of ISP provides proof of concept for further development of this new tool to enhance response planning for an incursion of FMD in the US and provides the capability to investigate response strategies that are designed to address specific outbreak response objectives.

3.
Front Vet Sci ; 10: 1229008, 2023.
Article in English | MEDLINE | ID: mdl-37559891

ABSTRACT

Introduction: The 2022-2023 highly pathogenic avian influenza (HPAI) H5N1 outbreak in the United States (U.S.) is the most geographically extensive and costly animal health event in U.S. history. In 2022 alone, over 57 million commercial and backyard poultry in 47 U.S. states were affected. Over 75% of affected poultry were part of the commercial table egg production sector. Methods: We conducted a case-control study to identify potential risk factors for introduction of HPAI virus onto commercial table egg operations. Univariate and multivariable analyses were conducted to compare farm characteristics, management, and biosecurity factors on case and control farms. Results: Factors associated with increased risk of infection included being in an existing control zone, sightings of wild waterfowl, mowing or bush hogging vegetation less than 4 times a month, having an off-site method of daily mortality disposal (off-site composting or burial, rendering, or landfill), and wild bird access to feed/feed ingredients at least some of the time. Protective factors included a high level of vehicle washing for trucks and trailers entering the farm (a composite variable that included having a permanent wash station), having designated personnel assigned to specific barns, having a farm entrance gate, and requiring a change of clothing for workers entering poultry barns. Discussion: Study results improve our understanding of risk factors for HPAI infection and control measures for preventing HPAI on commercial U.S. table egg farms.

4.
Front Vet Sci ; 10: 1157538, 2023.
Article in English | MEDLINE | ID: mdl-37396995

ABSTRACT

Foot-and-Mouth Disease virus (FMDV) is endemic in several regions and is a virus that can persist in the environment dependent on pH, relative humidity (RH), temperature, and matrix (i.e., soil, water, or air). Our previously published analysis of available viral persistence data showed that persistence is likely affected by interactions between RH, temperature, and matrix. Understanding these relationships will aid efforts to eliminate FMD, which has significant impacts on economies and food security. In Cameroon, West Africa, the livestock system consists of mobile (transhumant), transboundary trade and sedentary herds. Studying this system can provide information about the patterns of environmental detection of FMDV RNA that may influence approaches to virus elimination on premises during an outbreak. To improve our understanding of these patterns, we collected samples from individuals, vehicles, and along cattle pathways at three sedentary herds beginning on day one of owner-reported outbreaks, ending by day 30, and tested for the presence of FMD viral RNA using rRT-PCR. Our analysis suggests that detection decreases in soil surface samples with increased distance from herd and time from the first report of disease. Whereas time but not distance decreases detection in air samples. Interaction of RH and temperature suggests increased detection at high temperatures (>24°C) and RH (>75%), providing us with new information about the patterns of FMD viral RNA detection in and around cattle herds that could help to inform targeted virus elimination strategies, such as location and application of disinfectants.

5.
Front Vet Sci ; 9: 1026592, 2022.
Article in English | MEDLINE | ID: mdl-36337179

ABSTRACT

Development of a foot-and-mouth disease (FMD) carrier state following FMD virus (FMDV) infection is a well-established phenomenon in cattle. However, the proportion of cattle likely to become carriers and the duration of the carrier state at a herd or population-level are incompletely understood. The objective of this study was to examine the epidemiologic and economic impacts of vaccination-to-live strategy in a disease-free region or country. We developed and simulated scenarios of FMD spread and control in the US livestock population, which included depopulation for a limited period, followed by a vaccinate-to-live strategy with strong biosecurity and movement restrictions. Six scenarios of FMD spread and control were simulated in the InterSpread Plus (ISP) modeling tool. Data on the number of infected and depopulated cattle (by operation types) from ISP model runs were used to estimate the monthly number of infected but not depopulated (potential carrier) cattle after the infection. Using available literature data on the FMD carrier state, we estimated the monthly proportion of carrier cattle (from infected but not depopulated cattle) over time following infection. Among the simulated scenarios, the median (25th, 75th percentile) number of infected cattle ranged from 43,217 (42,819, 55,274) head to 148,907 (75,819, 205,350) head, and the epidemic duration ranged from 20 (11, 30) to 76 (38, 136) days. In general, larger outbreaks occurred when depopulation was carried out through longer periods, and the onset of the vaccination was late (p > 0.05). The estimated proportion of surviving cattle, which were infected and not depopulated and had the potential to become persistently infected ranged from 14 to 35% of total infected cattle. Production losses in beef and dairy sectors were higher when outbreaks started in multiple states simultaneously, but production losses were small compared to trade losses and consumer avoidance losses. These results can be used to inform the consideration of a vaccinate-to-live strategy for FMD outbreaks and the development of appropriate post-outbreak management strategies. Furthermore, this output will enable a more detailed examination of the epidemiologic and economic implications of allowing convalescent cattle to survive and remain in production chains after FMD outbreaks in FMD-free regions.

6.
Prev Vet Med ; 202: 105615, 2022 May.
Article in English | MEDLINE | ID: mdl-35339769

ABSTRACT

The global interconnectedness of the pig-production industry and the diversity of foot-and-mouth disease (FMD) viruses (FMDVs) currently circulating, makes modeling disease spread and control in FMD-free areas challenging. However, advances in experimental design and transmission studies create opportunities to strengthen our understanding and ability to model FMD transmission. In the current study, we estimated the duration of defined phases of FMDV infection in pigs by using data from a large collection of controlled in vivo experiments. Because the detection of low-levels of viral RNA does not correspond to infectiousness, an experimentally defined minimum threshold of FMDV RNA shedding in oropharyngeal fluids was used to estimate the onset of infectiousness in experiments in which transmission was not evaluated. Animal-level data were used in Accelerated Failure Time models to assess the effect of experimental design factors in the duration of defined phases of FMDV infection: latent, incubation, pre-clinical infectious, clinical infectious, and total infectious periods. The estimated means of the phases were latent: 25 h (95%CI 21, 29), incubation: 70 h (95%CI 64, 76), pre-clinical infectious: 36 h (95%CI 32, 41), clinical infectious: 265 h (95%CI 258, 272) and total infectious: 282 h (95%CI 273, 290). Virus strains and exposure methods had no significant influence on the duration of latency, incubation, or clinical infectious phases. By contrast, the estimated means of the duration of the pre-clinical infectious and total infectious phases were significantly influenced by virus strains, and the duration of the pre-clinical infectious phase was significantly influenced by exposure methods. This study provides disease parameters based on an estimated threshold of the onset of infectiousness and a probability distribution representing the end of infectiousness. Disease parameters that incorporate experimentally-based quantitative proxies to define phases of FMDV infection may improve planning and preparedness for FMD.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease/prevention & control , Swine Diseases/virology , Animals , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/isolation & purification , RNA, Viral/analysis , Swine , Swine Diseases/prevention & control , Time Factors , Virus Shedding
8.
Front Vet Sci ; 7: 373, 2020.
Article in English | MEDLINE | ID: mdl-32719815

ABSTRACT

Ectoparasites, such as cattle fever ticks, and the diseases they carry pose a risk to the global cattle population in reduced productivity and in livability. Tick infestations carry significant economic implications through losses in productivity, increased morbidity, and control costs. Cattle fever ticks were eradicated from the United States through concentrated efforts across state and federal agencies. The Cattle Fever Tick Eradication Program maintains a permanent quarantine and buffer zone along the Texas-Mexico border to monitor and control reincursions of the tick from Mexico due to movements of wildlife or stray animals. The number of apprehensions of stray livestock and changing infestation rates may be influenced by many factors including increases in violence along the border or environmental effects such as weather pattern changes, river levels, or temperature fluctuations. Using annual records of the number of cattle apprehended and infestation rates, an analysis of the effects of media-reported border violence and environmental conditions can provide a unique understanding of cattle fever tick prevention and the challenges control programs face. Results from this analysis suggest that both media-reported violence and weather changes affect the rate at which infested cattle are apprehended, and these effects differ depending on spatial and temporal factors. With continued land use changes, social unrest in endemic areas, and changing weather patterns, the efforts to control and eradicate cattle fever ticks, both in the United States and globally, is likely to be an ongoing concern.

9.
Front Vet Sci ; 7: 276, 2020.
Article in English | MEDLINE | ID: mdl-32509810

ABSTRACT

Foot-and-mouth disease (FMD) is one of the most economically important livestock diseases worldwide. Following the clinical phase of FMD, a large proportion of ruminants remain persistently infected for extended periods. Although extinction of this carrier state occurs continuously at the animal and population levels, studies vary widely in their estimates of the duration of persistent infection. There is a need for robust statistical models to capture the dynamics of persistent infection for the sake of guiding FMD control and trade policies. The goal of the current study was to develop and assess statistical models to describe the extinction of FMD virus (FMDV) persistent infection using data from primary longitudinal studies of naturally infected cattle and Asian buffalo in Vietnam and India. Specifically, accelerated failure time (AFT) models and generalized linear mixed models (GLMM) were developed to predict the probability of persistent infection in seropositive animals and identified carriers at the individual animal level at sequential time points after outbreaks. The primary studies were analyzed by country and combined using an individual-participant data meta-analysis approach. The models estimated similar trends in the duration of persistent infection for the study/species groups included in the analyses, however the significance of the trends differed between the models. The overall probabilities of persistent infection were similar as predicted by the AFT and GLMM models: 6 months: 99% (AFT) /80% (GLMM), 12 months: 51% (AFT) /32% (GLMM), 18 months: 6% (AFT) /5% (GLMM), 24 months: 0.8% (AFT) /0.6% (GLMM). These models utilizing diverse and robust data sets predict higher probabilities of persistence than previously published, suggesting greater endurance of carriers subsequent to an outbreak. This study demonstrates the utility of statistical models to investigate the dynamics of persistent infection and the importance of large datasets, which can be achieved by combining data from several smaller studies in meta-analyses. Results of this study enhance current knowledge of the FMDV carrier state and may inform policy decisions regarding FMDV persistent infection.

10.
Front Vet Sci ; 7: 334, 2020.
Article in English | MEDLINE | ID: mdl-32596275

ABSTRACT

Data-driven modeling of incursions of high-consequence, transboundary pathogens of animals is a critical component of veterinary preparedness. However, simplifying assumptions and excessive use of proxy measures to compensate for gaps in available data may compromise modeled outcomes. The current investigation was prospectively designed to address two major gaps in current knowledge of foot-and-mouth disease virus (FMDV) pathogenesis in pigs: the end (duration) of the infectious period and the viability of FMDV in decaying carcasses. By serial exposure of sentinel groups of pigs to the same group of donor pigs infected by FMDV A24 Cruzeiro, it was demonstrated that infected pigs transmitted disease at 10 days post infection (dpi), but not at 15 dpi. Assuming a latent period of 1 day, this would result in a conservative estimate of an infectious duration of 9 days, which is considerably longer than suggested by a previous report from an experiment performed in cattle. Airborne contagion was diminished within two days of removal of infected pigs from isolation rooms. FMDV in muscle was inactivated within 7 days in carcasses stored at 4oC. By contrast, FMDV infectivity in vesicle epithelium harvested from intact carcasses stored under similar conditions remained remarkably high until the study termination at 11 weeks post mortem. The output from this study consists of experimentally determined data on contagion associated with FMDV-infected pigs. This information may be utilized to update parameterization of models used for foot-and-mouth disease outbreak simulations involving areas of substantial pig production.

11.
J Am Vet Med Assoc ; 255(8): 908-914, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31573861

ABSTRACT

On September 30, 2016, the US National Veterinary Services Laboratory confirmed an autochthonous case of New World screwworm infestation in a Key deer (Odocoileus virginianus clavium) from Big Pine Key, Fla. This case marked the first identification of a sustained and reproducing population of New World screwworm flies in the United States since 1966. Multiple federal, state, and local government agencies collaborated to initiate a response to the outbreak. Efforts were successful in eradicating the flies from Florida.


Subject(s)
Deer , Diptera , Animals , Disease Outbreaks , Florida
12.
Front Vet Sci ; 6: 263, 2019.
Article in English | MEDLINE | ID: mdl-31448297

ABSTRACT

The objective of the current study was to update parameterization of mathematical simulation models for foot-and-mouth disease (FMD) spread in cattle utilizing recent knowledge of FMD virus (FMDV) pathogenesis and infection dynamics to estimate the duration of distinct phases of FMD. Specifically, the durations of incubation, latent, and infectious periods were estimated for 3 serotypes (O, Asia1, and A) of FMDV, individually and collectively (pan-serotypic). Animal-level data were used in Accelerated Failure Time (AFT) models to estimate the duration of the defined phases of infection, while also investigating the influence of factors related to the experimental design (exposure methods) and virus serotype on disease progression. Substantial influences upon the estimated duration of distinct phases of FMD included the quantity of viral shedding used as a proxy for the onset of infectiousness, virus serotypes, and experimental exposure methods. The use of detection of any viral RNA in nasal secretions as a proxy of infectiousness lengthened the total infectious period compared to use of threshold-based detection. Additionally, the experimental system used to infect the animals also had significant effects on the duration of distinct phases of disease. Overall, the mean [95% Confidence Interval (CI)] durations of pan-serotype disease phases in cattle were estimated to be: incubation phase = 3.6 days (2.7-4.8), latent phase = 1.5 days (1.1-2.1), subclinical infectious phase = 2.2 days (1.5-3.5), clinical infectious phase = 8.5 days (6.2-11.6), and total infectious phase = 10.8 days (8.2-14.2). This study highlights the importance of identifying appropriate proxy measures to define the onset and duration of infectiousness in FMDV-infected cattle in the absence of actual transmission data. Additionally, it is demonstrated herein that factors associated with experimental design, such as virus exposure methods, may significantly affect disease progression in individual animals and should be considered when data is extrapolated from experimental studies. Given limitations in experimental data availability, pan-serotypic parameters which include all routes of exposure and a threshold-defined onset of infectiousness may be the most robust parameters for exploratory disease spread modeling approaches, when information on the specific virus of interest is not available.

13.
Sci Rep ; 9(1): 2707, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30804426

ABSTRACT

The current investigation applied a Bayesian modeling approach to a unique experimental transmission study to estimate the occurrence of transmission of foot-and-mouth disease (FMD) during the incubation phase amongst group-housed pigs. The primary outcome was that transmission occurred approximately one day prior to development of visible signs of disease (posterior median 21 hours, 95% CI: 1.1-45.0). Updated disease state durations were incorporated into a simulation model to examine the importance of addressing preclinical transmission in the face of robust response measures. Simulation of FMD outbreaks in the US pig production sector demonstrated that including a preclinical infectious period of one day would result in a 40% increase in the median number of farms affected (166 additional farms and 664,912 pigs euthanized) compared to the scenario of no preclinical transmission, assuming suboptimal outbreak response. These findings emphasize the importance of considering transmission of FMD during the incubation phase in modeling and response planning.


Subject(s)
Foot-and-Mouth Disease Virus/pathogenicity , Foot-and-Mouth Disease/transmission , Foot-and-Mouth Disease/virology , Animals , Bayes Theorem , Cattle , Cattle Diseases/transmission , Cattle Diseases/virology , Swine
14.
Prev Vet Med ; 161: 41-49, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30466657

ABSTRACT

Foot-and-mouth disease (FMD) is a highly infectious viral disease of cloven-hoofed animals. FMD outbreaks have the potential to cause significant economic consequences, and effective control strategies are needed to minimize the damage to livestock systems and the economy. Although not the predominant route of infection, airborne transmission has been implicated in previous outbreaks. Under favorable weather conditions, airborne spread of FMD can make the rapid containment of an outbreak more difficult. Our objective was to identify seasonal and geographic differences in patterns of conditions favorable to airborne FMD spread in the United States. Data from a national network of surface weather stations were examined for three study years (December 2011-November 2012, December 2012-November 2013, December 2014-November 2015). Weather conditions were found to be most frequently favorable to airborne spread during the winter (December, January, February). Geographically, conditions were most frequently favorable to airborne FMD spread in the upper Midwestern United States, a region where swine and cattle populations are common. Across study years, conditions for airborne FMD spread were more frequently favorable when weather conditions were generally mild with few extremes with respect to temperature and precipitation (e.g., 2014-2015). However, national patterns in risk areas for airborne FMD spread were similar across study years even though the degree of risk differed based on variations in weather patterns among study years. Our findings suggest that airborne transmission could contribute to FMD spread between livestock premises in the event of an outbreak in the coterminous United States, and that some geographic areas are at an increased risk particularly in seasons with conducive weather conditions. To our knowledge, this is the first study to characterize the risk of airborne FMD spread on a national scale in the United States. The findings presented here can be used to enhance preparedness and surveillance activities by identifying specific geographic areas in the United States where airborne spread is most likely to be a risk factor for transmission during an outbreak.


Subject(s)
Air Microbiology , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/transmission , Livestock/virology , Seasons , Animals , Cattle , Cattle Diseases/transmission , Geography , Goat Diseases/transmission , Goats , Risk Factors , Sheep , Sheep Diseases/transmission , Spatial Analysis , Swine , Swine Diseases/transmission , United States/epidemiology , Weather
15.
Front Vet Sci ; 5: 167, 2018.
Article in English | MEDLINE | ID: mdl-30079340

ABSTRACT

The quantitative relationship between the exposure dose of foot-and-mouth disease virus (FMDV) and subsequent infection dynamics has been demonstrated through controlled inoculation studies in various species. However, similar quantitation of viral doses has not been achieved during contact exposure experiments due to the intrinsic difficulty of measuring the virus quantities exchanged between animals. In the current study, novel modeling techniques were utilized to investigate FMDV infection dynamics in groups of pigs that had been contact-exposed to FMDV-infected donors shedding varying levels of virus, as well as in pigs inoculated via the intra-oropharyngeal (IOP) route. Estimated virus exposure doses were modeled and were found to be statistically significantly associated with the dynamics of FMDV RNA detection in serum and oropharyngeal fluid (OPF), and with the time to onset of clinical disease. The minimum estimated shedding quantity in OPF that defined infectiousness of donor pigs was 6.55 log10 genome copy numbers (GCN)/ml (95% CI 6.11, 6.98), which delineated the transition from the latent to infectious phase of disease which occurred during the incubation phase. This quantity corresponded to a minimum estimated exposure dose of 5.07 log10 GCN/ml (95% CI 4.25, 5.89) in contact-exposed pigs. Thus, we demonstrated that a threshold quantity of FMDV detection in donor pigs was necessary in order to achieve transmission by direct contact. The outcomes from this investigation demonstrate that variability of infection dynamics which occurs during the progression of FMD in naturally exposed pigs can be partially attributed to variations in exposure dose. Moreover, these modeling approaches for dose-quantitation may be retrospectively applied to contact-exposure experiments or field scenarios. Hence, robust information could be incorporated into models used to evaluate FMD spread and control.

16.
Front Vet Sci ; 5: 174, 2018.
Article in English | MEDLINE | ID: mdl-30101147

ABSTRACT

Foot-and-mouth disease (FMD), caused by FMD virus (FMDV; Aphthovirus, Picornaviridae), is a highly contagious and economically important disease of cloven-hoofed domestic livestock and wildlife species worldwide. Subsequent to the clinical phase of FMD, a large proportion of FMDV-infected ruminants become persistently infected carriers, defined by detection of FMDV in oropharyngeal fluid (OPF) samples 28 days or more post-infection. The goal of this prospective study was to characterize the FMD carrier state in cattle subsequent to natural infection under typical husbandry practices in Vietnam. Ten persistently infected cattle on eight farms in the Long An province in southern Vietnam were monitored by monthly screening of serum and oropharyngeal fluid samples for 12 months. To assess transmission from FMDV carriers, 16 naïve cattle were intentionally brought into direct contact with the persistently infected animals for 6 months, and were monitored by clinical and laboratory methods. The restricted mean duration of the FMD carrier state was 27.7 months, and the rate of decrease of the proportion of carrier animals was 0.03 per month. There was no evidence of transmission to naïve animals throughout the study period. Additionally, there was no detection of FMDV infection or seroconversion in three calves born to carrier animals during the study. The force of infection for carrier-to-contact transmission was 0 per month, with upper 95% confidence limit of 0.064 per month. Phylogenetic analysis of viral protein 1 (VP1) coding sequences obtained from carriers indicated that all viruses recovered in this study belonged to the O/ME-SA/PanAsia lineage, and grouped phylogenetically with temporally and geographically related viruses. Analysis of within-host evolution of FMDV, based upon full-length open reading frame sequences recovered from consecutive samples from one animal, indicated that most of the non-synonymous changes occurred in Lpro, VP2, and VP3 protein coding regions. This study suggests that the duration of FMDV persistent infection in cattle may be longer than previously recognized, but the risk of transmission is low. Additional novel insights are provided into within-host viral evolution under natural conditions in an endemic setting.

17.
Prev Vet Med ; 155: 1-10, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29786519

ABSTRACT

Foot-and-mouth disease (FMD) is one of the most contagious and economically important livestock diseases worldwide. Four serotypes of FMD virus (FMDV; O, A, SAT1, SAT2) circulate in Cameroon, and a trivalent inactivated vaccine against the three most common serotypes (O, A, SAT2) was recently introduced in 2014. The objective of this study was to characterize vaccine performance in cattle under natural hyperendemic conditions in the Adamawa region of Cameroon. Vaccinated cattle (n = 50) and non-vaccinated controls (n = 100) were monitored by serum and oropharyngeal fluid (OPF) sample collection through a 12-month period. Anti-FMDV non-structural protein (anti-NSP) seroprevalence increased from 59.3% (89/150) at the beginning of the study to 85.8% (103/120) at the end of the study, and FMDV RNA was found in 28% (42/150) of animals overall, despite detection of clinical signs of FMD in only 6 non-vaccinated animals. Viral sequence analysis indicated that subclinical infections of FMDV serotypes O and A were present within the study herds during the study period, which was reflected by an overall increase of anti-NSP seroprevalence during the study. There was no association between vaccination status and seroconversion or prevalence of FMDV RNA in OPF. Younger cattle had higher odds of detection of FMDV RNA in OPF, but older animals were more likely to be seropositive. This study suggests vaccination of herds previously exposed to FMDV may help to limit clinical signs and reduce economic losses caused by FMDV. These findings also suggest that subclinical circulation of FMDV occurs in hyperendemic regions regardless of vaccination.


Subject(s)
Antibodies, Viral/blood , Cattle Diseases/prevention & control , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/prevention & control , Vaccination/veterinary , Animals , Cameroon/epidemiology , Cattle , Cattle Diseases/epidemiology , Foot-and-Mouth Disease/epidemiology , Seroepidemiologic Studies , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
18.
Front Vet Sci ; 3: 105, 2016.
Article in English | MEDLINE | ID: mdl-27917386

ABSTRACT

Understanding the quantitative characteristics of a pathogen's capability to transmit during distinct phases of infection is important to enable accurate predictions of the spread and impact of a disease outbreak. In the current investigation, the potential for transmission of foot-and-mouth disease virus (FMDV) during the incubation (preclinical) period of infection was investigated in seven groups of pigs that were sequentially exposed to a group of donor pigs that were infected by simulated-natural inoculation. Contact-exposed pigs were comingled with infected donors through successive 8-h time slots spanning from 8 to 64 h post-inoculation (hpi) of the donor pigs. The transition from latent to infectious periods in the donor pigs was clearly defined by successful transmission of foot-and-mouth disease (FMD) to all contact pigs that were exposed to the donors from 24 hpi and later. This onset of infectiousness occurred concurrent with detection of viremia, but approximately 24 h prior to the first appearance of clinical signs of FMD in the donors. Thus, the latent period of infection ended approximately 24 h before the end of the incubation period. There were significant differences between contact-exposed groups in the time elapsed from virus exposure to the first detection of FMDV shedding, viremia, and clinical lesions. Specifically, the onset and progression of clinical FMD were more rapid in pigs that had been exposed to the donor pigs during more advanced phases of disease, suggesting that these animals had received a higher effective challenge dose. These results demonstrate transmission and dissemination of FMD within groups of pigs during the incubation period of infection. Furthermore, these findings suggest that under current conditions, shedding of FMDV in oropharyngeal fluids is a more precise proxy for FMDV infectiousness than clinical signs of infection. These findings may impact modeling of the propagation of FMD outbreaks that initiate in pig holdings and should be considered when designing FMD control strategies.

19.
Avian Dis ; 60(2): 460-6, 2016 06.
Article in English | MEDLINE | ID: mdl-27309288

ABSTRACT

A case-control study was conducted among commercial table-egg layer and pullet operations in Iowa and Nebraska, United States, to investigate potential risk factors for infection with highly pathogenic avian influenza (HPAI) H5N2. A questionnaire was developed and administered to 28 case farms and 31 control farms. Data were collected at the farm and barn levels, enabling two separate analyses to be performed-the first a farm-level comparison of case farms vs. control farms, and the second a barn-level comparison between case barns on case farms and control barns on control farms. Multivariable logistic regression models were fit using a forward-selection procedure. Key risk factors identified were farm location in an existing control zone, rendering and garbage trucks coming near barns, dead-bird disposal located near barns, and visits by a company service person. Variables associated with a decreased risk of infection included visitors changing clothing, cleaning and disinfecting a hard-surface barn entryway, and ceiling/eaves ventilation in barns.


Subject(s)
Influenza A Virus, H5N2 Subtype/physiology , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Poultry Diseases/epidemiology , Poultry Diseases/transmission , Animals , Case-Control Studies , Chickens , Farms , Female , Influenza in Birds/virology , Iowa/epidemiology , Nebraska/epidemiology , Poultry Diseases/virology
20.
Prev Vet Med ; 117(3-4): 505-17, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25449736

ABSTRACT

Understanding the prevalence of cattle producers' beliefs regarding disease reporting can help officials improve surveillance programs with passive data collection. A cross-sectional survey was conducted in Texas in 2008 and 2009 to determine beliefs about reporting cattle with clinical signs consistent with foot-and-mouth disease (FMD) either prior to (scenario 1) or during an on-going outbreak of FMD (scenario 2). Two questionnaires were developed and distributed to Texas cow-calf producers in order to evaluate their behavioral, control, and normative beliefs related to disease reporting. The context for each behavior was provided through the use of scenarios, and belief strength was measured using a 7-point Likert-like scale. Beliefs were compared across scenarios and demographic categories, and the effect of scenario on belief examined using ordinal logistic regression. Respondents agreed that reporting clinically suspect cases would have positive economic and emotional consequences; however, when an outbreak was known to be present, producers were less likely to agree with many of the positive outcomes of reporting. Important barriers to disease reporting indicated by producers included a lack of knowledge related to clinical signs of highly contagious cattle diseases and which cattle are at risk of contracting FMD. In general, beliefs about barriers to reporting did not differ based on scenario. Veterinarians and regulatory authorities were the groups perceived to most strongly expect disease reporting, regardless of the scenario. Risk education for producers related to clinical signs of reportable livestock diseases, post-reporting procedures, and an understanding of FMD introduction and spread may improve the reporting of cattle with clinical signs consistent with FMD.


Subject(s)
Animal Husbandry/methods , Cattle Diseases/epidemiology , Disease Outbreaks/veterinary , Foot-and-Mouth Disease/epidemiology , Health Knowledge, Attitudes, Practice , Animals , Cattle , Cattle Diseases/virology , Communicable Disease Control , Cross-Sectional Studies , Foot-and-Mouth Disease/virology , Prevalence , Surveys and Questionnaires , Texas/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...