Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38976487

ABSTRACT

Purpose: Activation of the classical complement pathway is thought to contribute to the development and progression of glaucoma. The role of alternative complement or amplification pathways in glaucoma is not well understood. We evaluated complement factor B (FB) expression in postmortem human ocular tissues with or without glaucoma and the effect of FB inhibition and deletion in a mouse ocular hypertensive model of glaucoma induced by photopolymerized hyaluronic acid glycidyl methacrylate (HAGM). Methods: Human CFB mRNA in human eyes was assessed by RNAscope and TaqMan. HAGM model was performed on C57BL6/J mice. The effect of FB in HAGM model was evaluated with an oral FB inhibitor and Cfb-/- mice. Complement mRNA and proteins in mouse eyes were assessed by TaqMan and western blot, respectively. Results: CFB mRNA in human glaucomatous macular neural retina and optic nerve head was upregulated. Cfb mRNA is also upregulated in the HAGM model. Oral FB inhibitor, ED-79-GX17, dosed daily at 200 mg/kg for 3 days after intraocular pressure (IOP) induction in wild-type mice showed complement inhibition in ocular tissues and significantly inhibited systemic complement levels. Daily dosing of ED-79-GX17 for 30 days or Cfb deletion was also unable to prevent retinal ganglion cell or axon loss 30 days after IOP induction in mice. Conclusion: The alternative complement component FB may not substantially contribute to RGC loss in the HAGM mouse glaucoma model despite upregulation of Cfb expression and activation of the alternative pathway. The relevance of these findings to human glaucoma remains to be determined.

2.
Article in Spanish | LILACS, CUMED | ID: biblio-1536328

ABSTRACT

El Programa del Médico y la Enfermera de la Familia, que brinda cobertura al 100 por ciento de la población cubana, se encuentra en un proceso de desarrollo permanente y, en el momento actual, presenta una etapa cualitativamente superior, en la que la calidad de su atención y el desarrollo científico técnico de los recursos humanos adquiere especial significación. En la actualidad existen más de 11 128 equipos básicos de salud (médico y enfermera)1,2 y hasta el año 2021 se formaron 61 9931,3) y 16854) especialistas de primer grado en Medicina General Integral (MGI) y en Enfermería Comunitaria respectivamente. En enfermería se dejaron de formar sin justificación de la decisión. El nuevo programa dirigido a los profesionales de la enfermería pretende formar un profesional de perfil especializado en Enfermería Comunitaria Integral (ECI), preparado para desarrollar funciones asistenciales, administrativas, docentes e investigativas, con competencias laborales para dar solución a los problemas que identifique en individuos, familia, comunidad y entorno, en áreas e instituciones de salud.1,2 Los futuros especialistas del equipo básico de salud (EBS) se formaron a partir del 2020 en las mismas unidades docentes, lo que constituye una oportunidad para el aprendizaje interprofesional y de competencias compartidas que faciliten el cumplimiento de los objetivos del Programa del Médico y Enfermera de la Familia. Estos programas de especialización tienen muchos puntos de coincidencia, no solamente en la duración de tres años con dedicación a tiempo completo en el consultorio del médico y enfermera de la familia y una frecuencia de 44 horas semanales, sino también en los principios científico pedagógicos y algunos contenidos de las competencias dirigidas a la atención del individuo, la familia, la comunidad y el entorno.5,6 El nivel primario de salud, el Consultorio del Médico y Enfermera de la Familia y el policlínico son los elementos de referencia fundamentales de estos programas de especialización y la educación en el trabajo su principal forma de organización de la enseñanza que se concreta con el aprendizaje en los diferentes servicios por donde rotan, como actividad docente-asistencial-investigativa-administrativa, actividades que se realizan, además, en los hospitales clínico quirúrgico, pediátricos, ginecobstétricos, hogares maternos y de ancianos, círculos infantiles y otros. Los futuros especialistas en MGI y ECI ejecutan las guardias de conjunto con los profesores médicos, para desarrollar y adquirir habilidades propuestas en su plan de estudio. Las guardias se realizan en el área de salud donde están ubicados y en los centros por donde rotan, con una frecuencia semanal y un fin de semana en el mes como mínimo. Para las actividades académicas teóricas colectivas se destinan cuatro horas semanales para discusión de problemas de salud, seminarios, conferencias, revisiones bibliográficas, entre otras; estas se realizarán en el área de salud y para exámenes de promoción, se definen tres semanas al finalizar cada año. La evaluación de graduación se realiza al concluir los tres años designados para la especialidad. Comprende la presentación y defensa del trabajo de terminación de la especialidad, así como la realización de un examen práctico y uno teórico de forma oral. Aprobar este examen estatal certifica que el graduado está apto para ejercer como especialista en Medicina General Integral o Enfermería Integral Comunitaria. La realidad es que en Cuba estos especialistas tienen como una de sus premisas fundamentales, que la comunidad se transforme en su verdadero sujeto-objeto de las acciones de salud, que las modificaciones en los perfiles de salud-enfermedad sean el resultado no solo de los cambios conductuales individuales, sino de la adopción colectiva de un modo de vida más sano, para lo cual los fundamentos teóricos y prácticos de las ciencias sociomédicas deberán constituirse en sus herramientas de trabajo cotidiano. La actualización del Programa del Médico y la Enfermera de la Familia constituye un nuevo desafío para el Ministerio de Salud Pública y sus instituciones de educación superior y representa un compromiso con el objetivo de mejorar el estado de salud de la población. Esperamos que estas especialidades sean líderes en ello(AU)


Subject(s)
Humans , Male , Female , Quality of Health Care , Cuba , Family Practice , Family Nurse Practitioners
3.
Hum Mol Genet ; 32(2): 204-217, 2023 01 06.
Article in English | MEDLINE | ID: mdl-35943778

ABSTRACT

EFEMP1 R345W is a dominant mutation causing Doyne honeycomb retinal dystrophy/malattia leventinese (DHRD/ML), a rare blinding disease with clinical pathology similar to age-related macular degeneration (AMD). Aged Efemp1  R345W/R345W knock-in mice (Efemp1ki/ki) develop microscopic deposits on the basal side of retinal pigment epithelial cells (RPE), an early feature in DHRD/ML and AMD. Here, we assessed the role of alternative complement pathway component factor B (FB) in the formation of these deposits. RNA-seq analysis of the posterior eyecups revealed increased unfolded protein response, decreased mitochondrial function in the neural retina (by 3 months of age) and increased inflammatory pathways in both neural retina and posterior eyecups (at 17 months of age) of Efemp1ki/ki mice compared with wild-type littermate controls. Proteomics analysis of eye lysates confirmed similar dysregulated pathways as detected by RNA-seq. Complement activation was increased in aged Efemp1ki/ki eyes with an approximately 2-fold elevation of complement breakdown products iC3b and Ba (P < 0.05). Deletion of the Cfb gene in female Efemp1ki/ki mice partially normalized the above dysregulated biological pathway changes and oral dosing of a small molecule FB inhibitor from 10 to 12 months of age reduced sub-RPE deposits by 65% (P = 0.029). In contrast, male Efemp1ki/ki mice had fewer sub-RPE deposits than age-matched females, no elevation of ocular complement activation and no effect of FB inhibition on sub-RPE deposits. The effects of FB deletion or inhibition on Efemp1ki/ki mice supports systemic inhibition of the alternative complement pathway as a potential treatment of dry AMD and DHRD/ML.


Subject(s)
Macular Degeneration , Optic Disk Drusen , Male , Mice , Female , Animals , Complement Factor B/genetics , Macular Degeneration/genetics , Macular Degeneration/pathology , Optic Disk Drusen/pathology , Retina/pathology , Retinal Pigment Epithelium/pathology
4.
In. Alvarez Sintes, Roberto. Fundamentos de Medicina General Integral. La Habana, Editorial Ciencias Médicas, 2023. , ilus, tab.
Monography in Spanish | CUMED | ID: cum-78906
5.
Invest Ophthalmol Vis Sci ; 62(7): 26, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34160562

ABSTRACT

Purpose: Dysregulation of the alternative complement pathway is a major pathogenic mechanism in age-related macular degeneration. We investigated whether locally synthesized complement components contribute to AMD by profiling complement expression in postmortem eyes with and without AMD. Methods: AMD severity grade 1 to 4 was determined by analysis of postmortem acquired fundus images and hematoxylin and eosin stained histological sections. TaqMan (donor eyes n = 39) and RNAscope/in situ hybridization (n = 10) were performed to detect complement mRNA. Meso scale discovery assay and Western blot (n = 31) were used to measure complement protein levels. Results: The levels of complement mRNA and protein expression were approximately 15- to 100-fold (P < 0.0001-0.001) higher in macular retinal pigment epithelium (RPE)/choroid tissue than in neural retina, regardless of AMD grade status. Complement mRNA and protein levels were modestly elevated in vitreous and the macular neural retina in eyes with geographic atrophy (GA), but not in eyes with early or intermediate AMD, compared to normal eyes. Alternative and classical pathway complement mRNAs (C3, CFB, CFH, CFI, C1QA) identified by RNAscope were conspicuous in areas of atrophy; in those areas C3 mRNA was observed in a subset of IBA1+ microglia or macrophages. Conclusions: We verified that RPE/choroid contains most ocular complement; thus RPE/choroid rather than the neural retina or vitreous is likely to be the key site for complement inhibition to treat GA or earlier stage of the disease. Outer retinal local production of complement mRNAs along with evidence of increased complement activation is a feature of GA.


Subject(s)
Choroid , Complement Activation , Complement System Proteins/genetics , Macular Degeneration , Retina , Retinal Pigment Epithelium , Aged , Autopsy/methods , Choroid/metabolism , Choroid/pathology , Complement Pathway, Alternative , Female , Gene Expression Profiling/methods , Geographic Atrophy/pathology , Humans , Macular Degeneration/metabolism , Macular Degeneration/pathology , Male , RNA, Messenger/analysis , Retina/metabolism , Retina/pathology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology
6.
Data Brief ; 26: 104399, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31516943

ABSTRACT

Diffusion-weighted magnetic resonance imaging (dMRI) is widely used to infer microstructural characteristics of tissue, particularly in cerebral white matter. Histological validation of the metrics derived from dMRI methods are needed to fully characterize their ability to capture biologically-relevant histological features non-invasively. The data described here were used to correlate metrics derived from dMRI and quantitative histology in an animal model of axonal degeneration ("Histological validation of per-bundle water diffusion metrics within a region of fiber crossing following axonal degeneration" [1]). Unilateral retinal ischemia/reperfusion was induced in 10 rats, by the elevation of pressure of the anterior chamber of the eye for 90 min. Five rats were used as controls. After five weeks, injured animals were intracardially perfused to analyze the optic nerves and chiasm with dMRI and histology. This resulted in 15 brain scans, each with 80 diffusion-sensitizing gradient directions with b = 2000 and 2500 s/mm2 and 20 non-diffusion-weighted images (b = 0 s/mm2), with isometric voxel resolution of 125 µm3. Histological sections were obtained after dMRI. Optical microscopy photomicrographs of the optic nerves (stained with toluidine blue) are available, as well as their corresponding automatic segmentations of axons and myelin.

7.
Neuroimage ; 201: 116013, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31326575

ABSTRACT

Micro-architectural characteristics of white matter can be inferred through analysis of diffusion-weighted magnetic resonance imaging (dMRI). The diffusion-dependent signal can be analyzed through several methods, with the tensor model being the most frequently used due to its straightforward interpretation and low requirements for acquisition parameters. While valuable information can be gained from the tensor-derived metrics in regions of homogeneous tissue organization, this model does not provide reliable microstructural information at crossing fiber regions, which are pervasive throughout human white matter. Several multiple fiber models have been proposed that seem to overcome the limitations of the tensor, with few providing per-bundle dMRI-derived metrics. However, biological interpretations of such metrics are limited by the lack of histological confirmation. To this end, we developed a straightforward biological validation framework. Unilateral retinal ischemia was induced in ten rats, which resulted in axonal (Wallerian) degeneration of the corresponding optic nerve, while the contralateral was left intact; the intact and injured axonal populations meet at the optic chiasm as they cross the midline, generating a fiber crossing region in which each population has different diffusion properties. Five rats served as controls. High-resolution ex vivo dMRI was acquired five weeks after experimental procedures. We correlated and compared histology to per-bundle descriptors derived from three methodologies for dMRI analysis (constrained spherical deconvolution and two multi-tensor representations). We found a tight correlation between axonal density (as evaluated through automatic segmentation of histological sections) with per-bundle apparent fiber density and fractional anisotropy (derived from dMRI). The multi-fiber methods explored were able to correctly identify the damaged fiber populations in a region of fiber crossings (chiasm). Our results provide validation of metrics that bring substantial and clinically useful information about white-matter tissue at crossing fiber regions. Our proposed framework is useful to validate other current and future dMRI methods.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Nerve Fibers, Myelinated , Wallerian Degeneration , Animals , Benchmarking , Female , Rats , Rats, Wistar , Water
8.
J Med Chem ; 62(9): 4656-4668, 2019 05 09.
Article in English | MEDLINE | ID: mdl-30995036

ABSTRACT

Complement factor D (FD), a highly specific S1 serine protease, plays a central role in the amplification of the alternative complement pathway (AP) of the innate immune system. Dysregulation of AP activity predisposes individuals to diverse disorders such as age-related macular degeneration, atypical hemolytic uremic syndrome, membranoproliferative glomerulonephritis type II, and paroxysmal nocturnal hemoglobinuria. Previously, we have reported the screening efforts and identification of reversible benzylamine-based FD inhibitors (1 and 2) binding to the open active conformation of FD. In continuation of our drug discovery program, we designed compounds applying structure-based approaches to improve interactions with FD and gain selectivity against S1 serine proteases. We report herein the design, synthesis, and medicinal chemistry optimization of the benzylamine series culminating in the discovery of 12, an orally bioavailable and selective FD inhibitor. 12 demonstrated systemic suppression of AP activation in a lipopolysaccharide-induced AP activation model as well as local ocular suppression in intravitreal injection-induced AP activation model in mice expressing human FD.


Subject(s)
Benzylamines/pharmacology , Complement Pathway, Alternative/drug effects , Serine Proteinase Inhibitors/pharmacology , Animals , Benzylamines/chemical synthesis , Benzylamines/metabolism , Binding Sites , Complement Factor D/antagonists & inhibitors , Complement Factor D/chemistry , Complement Factor D/metabolism , Dogs , Drug Design , Humans , Mice, Inbred C57BL , Mice, Transgenic , Molecular Docking Simulation , Protein Conformation , Rats , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/metabolism
9.
Oxid Med Cell Longev ; 2019: 5287507, 2019.
Article in English | MEDLINE | ID: mdl-31949879

ABSTRACT

Kainic acid (KA) has been used to study the neurotoxicity induced after status epilepticus (SE) due to activation of excitatory amino acids with neuronal damage. Medicinal plants can protect against damage caused by KA-induced SE; in particular, organic extracts of Heterotheca inuloides and its metabolite quercetin display antioxidant activity and act as hepatoprotective agents. However, it is unknown whether these properties can protect against the hyperexcitability underlying the damage caused by KA-induced SE. Our aim was to study the protective effects (with regard to behavior and antioxidant activity) of administration of natural products methanolic (ME) and acetonic (AE) extracts and quercetin (Q) from H. inuloides at doses of 30 mg/kg (ME30, AE30, and Q30 groups), 100 mg/kg (ME100, AE100, and Q100 groups), and 300 mg/kg (ME300, AE300, and Q300 groups) against damage in brain regions of male Wistar rats treated with KA. We found dose-dependent effects on behavioral and biochemical studies in the all-natural product groups vs. the control group, with decreases in seizure severity (Racine's scale) and increases in seizure latency (p < 0.05 in the ME100, AE100, Q100, and Q300 groups and p < 0.01 in the AE300 and ME300 groups); on lipid peroxidation and carbonylated proteins in all brain tissues (p < 0.0001); and on GPx, GR, CAT, and SOD activities with all the treatments vs. KA (p ≤ 0.001). In addition, there were strong negative correlations between carbonyl levels and latency in the group treated with KA and in the group treated with methanolic extract in the presence of KA (r = -0.9919, p = 0.0084). This evidence suggests that organic extracts and quercetin from H. inuloides exert anticonvulsant effects via direct scavenging of reactive oxygen species (ROS) and modulation of antioxidant enzyme activity.


Subject(s)
Antioxidants/pharmacology , Asteraceae/chemistry , Behavior, Animal/drug effects , Kainic Acid/toxicity , Plant Extracts/pharmacology , Quercetin/pharmacology , Status Epilepticus/drug therapy , Acetone/chemistry , Animals , Drug Combinations , Excitatory Amino Acid Agonists/toxicity , Lipid Peroxidation/drug effects , Male , Methanol/chemistry , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Status Epilepticus/chemically induced , Status Epilepticus/metabolism , Status Epilepticus/pathology
10.
Invest Ophthalmol Vis Sci ; 59(2): 940-951, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29450541

ABSTRACT

Purpose: Genome-wide association studies suggest a role for the complement system in age-related macular degeneration (AMD). We characterized ocular complement activation and evaluated a complement factor D (FD) neutralizing antibody. Methods: Mice were treated with toll-like receptor (TLR) ligands, intravitreal injection (IVT), or corneal debridement. Levels of complement proteins and mRNA were measured. A FD neutralizing antibody was administered IVT into eyes of rabbits that were challenged with LPS (lipopolysaccharide) administered intravenously. Results: Levels of C3 and factor B (FB) mRNA and protein in the eye were increased following intraperitoneal injection of TLR4 ligand LPS. Increased levels of C3 and FB breakdown products were observed in both eye tissues and plasma. Complement activation products were markedly reduced in C3-/- and Cfb-/- mice challenged with LPS. Ocular complement levels were also elevated in mice treated systemically with TLR2 and -3 ligands, injured by IVT injection or corneal debridement, or even in normal aging. IVT administration of a complement FD neutralizing antibody in rabbits inhibited LPS-induced complement activation in the posterior segment of the eye, but not in the anterior segment of the eye or in plasma. Conclusions: Systemic TLR stimulation and eye tissue injury induced time-dependent alternative complement pathway activation in the eye. Ocular complement levels were also gradually elevated during aging. An anti-FD antibody IVT potently inhibited LPS-induced complement activation in the posterior segment of the eye. This study provides insights into the dynamic profile of ocular complement activation, which is valuable for complement research in eye diseases and for developing complement therapeutics for AMD.


Subject(s)
Antibodies, Neutralizing/pharmacology , Complement Factor D/antagonists & inhibitors , Complement Pathway, Alternative/physiology , Inflammation/immunology , Models, Animal , Animals , Blotting, Western , Complement C3/metabolism , Complement Factor B/metabolism , Female , Injections, Intraperitoneal , Intravitreal Injections , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , Rabbits , Toll-Like Receptor 4/metabolism
11.
J Med Chem ; 60(13): 5717-5735, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28621538

ABSTRACT

The highly specific S1 serine protease factor D (FD) plays a central role in the amplification of the complement alternative pathway (AP) of the innate immune system. Genetic associations in humans have implicated AP activation in age-related macular degeneration (AMD), and AP dysfunction predisposes individuals to disorders such as paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS). The combination of structure-based hit identification and subsequent optimization of the center (S)-proline-based lead 7 has led to the discovery of noncovalent reversible and selective human factor D (FD) inhibitors with drug-like properties. The orally bioavailable compound 2 exerted excellent potency in 50% human whole blood in vitro and blocked AP activity ex vivo after oral administration to monkeys as demonstrated by inhibition of membrane attack complex (MAC) formation. Inhibitor 2 demonstrated sustained oral and ocular efficacy in a model of lipopolysaccharide (LPS)-induced systemic AP activation in mice expressing human FD.


Subject(s)
Complement Factor D/antagonists & inhibitors , Complement Pathway, Alternative/drug effects , Proline/analogs & derivatives , Proline/pharmacology , Administration, Oral , Animals , Atypical Hemolytic Uremic Syndrome/drug therapy , Atypical Hemolytic Uremic Syndrome/immunology , Complement Factor D/immunology , Complement Membrane Attack Complex/antagonists & inhibitors , Complement Membrane Attack Complex/immunology , Female , Haplorhini , Humans , Macaca fascicularis , Macular Degeneration/drug therapy , Macular Degeneration/immunology , Male , Mice , Proline/administration & dosage , Proline/pharmacokinetics
12.
Mol Vis ; 23: 318-333, 2017.
Article in English | MEDLINE | ID: mdl-28659708

ABSTRACT

PURPOSE: A region within chromosome 10q26 has a set of single nucleotide polymorphisms (SNPs) that define a haplotype that confers high risk for age-related macular degeneration (AMD). We used a bioinformatics approach to search for genes in this region that may be responsible for risk for AMD by assessing levels of gene expression in individuals carrying different haplotypes and by searching for open chromatin regions in the retinal pigment epithelium (RPE) that might include one or more of the SNPs. METHODS: We surveyed the PubMed and the 1000 Genomes databases to find all common (minor allele frequency > 0.01) SNPs in 10q26 strongly associated with AMD. We used the HaploReg and LDlink databases to find sets of SNPs with alleles in linkage disequilibrium and used the Genotype-Tissue Expression (GTEx) database to search for correlations between genotypes at individual SNPs and the relative level of expression of the genes. We also accessed Encyclopedia of DNA Elements (ENCODE) to find segments of open chromatin in the region with the AMD-associated SNPs. Predicted transcription factor binding motifs were identified using HOMER, PROMO, and RegulomeDB software programs. RESULTS: There are 34 polymorphisms within a 30-kb region that are in strong linkage disequilibrium (r2>0.8) with the reference SNP rs10490924 previously associated with risk for AMD. The expression of three genes in this region, PLEKHA1, ARMS2, and HTRA1 varies between people who have the low-AMD-risk haplotype compared with those with the high-AMD-risk haplotype. For PLEKHA1, 44 tissues have an expression pattern with the high-AMD-risk haplotype associated with low expression (rs10490924 effect size -0.43, p = 3.8 x 10-5 in ovary). With regard to ARMS2, the variation is most pronounced in testes: homozygotes with the high-AMD-risk haplotype express ARMS2 at lower levels than homozygotes with the low-AMD-risk haplotype; expression in heterozygotes falls in between (rs10490924 effect size -0.79, p = 7.5 x 10-24). For HTRA1, the expression pattern is the opposite; the high-AMD-risk haplotype has higher levels of expression in 27 tissues (rs10490924 effect size 0.40, p = 1.5 × 10-7 in testes). None of the other 22 genes within one megabase of rs10490924, or any gene in the entire genome, have mRNA expression levels that correlate with the high-AMD-risk haplotype. More than 100 other SNPs in the 10q26 region affect the expression of PLEKHA1 and ARMS2 but not that of HTRA1; none of these SNPs affects the risk for AMD according to published genome-wide association studies (GWASs). Two of the AMD-risk SNPs (rs36212732 and rs36212733) affect transcription factor binding sites in proximity to a DNase I hypersensitive region (i.e., a region of open chromatin) in RPE cells. CONCLUSIONS: SNPs in chromosome 10q26 that influence the expression of only PLEKHA1 or ARMS2 are not associated with risk for AMD, while most SNPs that influence the expression of HTRA1 are associated with risk for AMD. Two of the AMD-risk SNPs affect transcription factor binding sites that may control expression of one of the linked genes in the RPE. These findings suggest that the variation in the risk for AMD associated with chromosome 10q26 is likely due to variation in HTRA1 expression. Modulating HTRA1 activity might be a potential therapy for AMD.


Subject(s)
Chromosomes, Human, Pair 10/genetics , Gene Expression Regulation , Genetic Predisposition to Disease , Haplotypes/genetics , High-Temperature Requirement A Serine Peptidase 1/genetics , Macular Degeneration/genetics , Adult , Alleles , Base Sequence , Binding Sites/genetics , Female , Heterozygote , High-Temperature Requirement A Serine Peptidase 1/metabolism , Homozygote , Humans , Intracellular Signaling Peptides and Proteins/genetics , Linkage Disequilibrium/genetics , Male , Membrane Proteins/genetics , Ovary/metabolism , Polymorphism, Single Nucleotide , Proteins/genetics , Risk Factors , Testis/metabolism , Transcription Factors/metabolism
13.
Nat Chem Biol ; 12(12): 1105-1110, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27775713

ABSTRACT

Complement is a key component of the innate immune system, recognizing pathogens and promoting their elimination. Complement component 3 (C3) is the central component of the system. Activation of C3 can be initiated by three distinct routes-the classical, the lectin and the alternative pathways-with the alternative pathway also acting as an amplification loop for the other two pathways. The protease factor D (FD) is essential for this amplification process, which, when dysregulated, predisposes individuals to diverse disorders including age-related macular degeneration and paroxysmal nocturnal hemoglobinuria (PNH). Here we describe the identification of potent and selective small-molecule inhibitors of FD. These inhibitors efficiently block alternative pathway (AP) activation and prevent both C3 deposition onto, and lysis of, PNH erythrocytes. Their oral administration inhibited lipopolysaccharide-induced AP activation in FD-humanized mice. These data demonstrate the feasibility of inhibiting the AP with small-molecule antagonists and support the development of FD inhibitors for the treatment of complement-mediated diseases.


Subject(s)
Complement Factor D/antagonists & inhibitors , Complement Pathway, Alternative/drug effects , Enzyme Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Animals , Complement Factor D/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...