Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Syst Des Eng ; 7(8): 915-932, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-37274761

ABSTRACT

Labeled protein-based biomaterials have become a popular for various biomedical applications such as tissue-engineered, therapeutic, or diagnostic scaffolds. Labeling of protein biomaterials, including with ultrasmall super-paramagnetic iron oxide (USPIO) nanoparticles, has enabled a wide variety of imaging techniques. These USPIO-based biomaterials are widely studied in magnetic resonance imaging (MRI), thermotherapy, and magnetically-driven drug delivery which provide a method for direct and non-invasive monitoring of implants or drug delivery agents. Where most developments have been made using polymers or collagen hydrogels, shown here is the use of a rationally designed protein as the building block for a meso-scale fiber. While USPIOs have been chemically conjugated to antibodies, glycoproteins, and tissue-engineered scaffolds for targeting or improved biocompatibility and stability, these constructs have predominantly served as diagnostic agents and often involve harsh conditions for USPIO synthesis. Here, we present an engineered protein-iron oxide hybrid material comprised of an azide-functionalized coiled-coil protein with small molecule binding capacity conjugated via bioorthogonal azide-alkyne cycloaddition to an alkyne-bearing iron oxide templating peptide, CMms6, for USPIO biomineralization under mild conditions. The coiled-coil protein, dubbed Q, has been previously shown to form nanofibers and, upon small molecule binding, further assembles into mesofibers via encapsulation and aggregation. The resulting hybrid material is capable of doxorubicin encapsulation as well as sensitive T2*-weighted MRI darkening for strong imaging capability that is uniquely derived from a coiled-coil protein.

2.
Biomacromolecules ; 21(9): 3608-3619, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32786534

ABSTRACT

A protein-engineered triblock copolymer hydrogel composed of two self-assembling domains (SADs) has been fabricated by a photoactivatable diazirine group followed by ultraviolet (UV)-mediated crosslinking. The photocrosslinkable protein polymer CEC-D has been patterned into various features including different micrometer-scale stripes by using lithographic techniques. The patterned hydrogels are important for encapsulation of small molecules where a photopatterned fraction of 50% is optimal for maximum absorption. Stripe-patterned CEC-D100-100 exhibits slightly lower swelling ratios, an 8.9 times lower erosion profile, and a 2.6-fold higher drug release compared to the unpatterned hydrogel control, CEC-D0. Our studies demonstrate the potential of photocrosslinkable protein polymer hydrogels to be used as scaffolds for therapeutic delivery of small molecules. Through photolithographic techniques on the protein hydrogel, a variety of functionalities can be achieved by patterning different features enabling the mimicry of biological systems.


Subject(s)
Hydrogels , Polymers , Drug Liberation
3.
Biomacromolecules ; 20(9): 3340-3351, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31356057

ABSTRACT

Thermoresponsive hydrogels are used for an array of biomedical applications. Lower critical solution temperature-type hydrogels have been observed in nature and extensively studied in comparison to upper critical solution temperature (UCST)-type hydrogels. Of the limited protein-based UCST-type hydrogels reported, none have been composed of a single coiled-coil domain. Here, we describe a biosynthesized homopentameric coiled-coil protein capable of demonstrating a UCST. Microscopy and structural analysis reveal that the hydrogel is stabilized by molecular entanglement of protein nanofibers, creating a porous matrix capable of binding the small hydrophobic molecule, curcumin. Curcumin binding increases the α-helical structure, fiber entanglement, mechanical integrity, and thermostability, resulting in sustained drug release at physiological temperature. This work provides the first example of a thermoresponsive hydrogel comprised of a single coiled-coil protein domain that can be used as a vehicle for sustained release and, by demonstrating UCST-type behavior, shows promise in forging a relationship between coiled-coil protein-phase behavior and that of synthetic polymer systems.


Subject(s)
Drug Carriers/chemistry , Hydrogels/chemistry , Polymers/chemistry , Proteins/chemistry , Delayed-Action Preparations/chemistry , Drug Carriers/chemical synthesis , Hydrogels/chemical synthesis , Hydrophobic and Hydrophilic Interactions , Protein Domains/genetics , Protein Engineering , Temperature
4.
ACS Nano ; 13(3): 2969-2985, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30758189

ABSTRACT

Engineered proteins provide an interesting template for designing fluorine-19 (19F) magnetic resonance imaging (MRI) contrast agents, yet progress has been hindered by the unpredictable relaxation properties of fluorine. Herein, we present the biosynthesis of a protein block copolymer, termed "fluorinated thermoresponsive assembled protein" (F-TRAP), which assembles into a monodisperse nanoscale micelle with interesting 19F NMR properties and the ability to encapsulate and release small therapeutic molecules, imparting potential as a diagnostic and therapeutic (theranostic) agent. The assembly of the F-TRAP micelle, composed of a coiled-coil pentamer corona and a hydrophobic, thermoresponsive elastin-like polypeptide core, results in a drastic depression in spin-spin relaxation ( T2) times and unaffected spin-lattice relaxation ( T1) times. The nearly unchanging T1 relaxation rates and linearly dependent T2 relaxation rates have allowed for detection via zero echo time 19F MRI, and the in vivo MR potential has been preliminarily explored using 19F magnetic resonance spectroscopy (MRS). This fluorinated micelle has also demonstrated the ability to encapsulate the small-molecule chemotherapeutic doxorubicin and release its cargo in a thermoresponsive manner owing to its inherent stimuli-responsive properties, presenting an interesting avenue for the development of thermoresponsive 19F MRI/MRS-traceable theranostic agents.


Subject(s)
Antibiotics, Antineoplastic/chemistry , Doxorubicin/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Protein Engineering , Proteins/chemistry , Theranostic Nanomedicine , Animals , Antibiotics, Antineoplastic/therapeutic use , Doxorubicin/therapeutic use , Female , Fluorine/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , MCF-7 Cells , Magnetic Resonance Imaging , Mammary Neoplasms, Experimental/diagnostic imaging , Mammary Neoplasms, Experimental/drug therapy , Mice , Mice, Nude , Micelles , Proteins/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/therapeutic use , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...