Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 12(3)2021 05 11.
Article in English | MEDLINE | ID: mdl-33975930

ABSTRACT

Group A rotaviruses (RVAs) are the major cause of severe acute gastroenteritis (AGE) in children under 5 years of age, annually resulting in nearly 130,000 deaths worldwide. Social conditions in developing countries that contribute to decreased oral rehydration and vaccine efficacy and the lack of approved antiviral drugs position RVA as a global health concern. In this minireview, we present an update in the field of antiviral compounds, mainly in relation to the latest findings in RVA virion structure and the viral replication cycle. In turn, we attempt to provide a perspective on the possible treatments for RVA-associated AGE, with special focus on novel approaches, such as those representing broad-spectrum therapeutic options. In this context, the modulation of host factors, lipid droplets, and the viral polymerase, which is highly conserved among AGE-causing viruses, are analyzed as possible drug targets.


Subject(s)
Antiviral Agents/therapeutic use , Drug Development , Rotavirus Infections/drug therapy , Rotavirus/drug effects , Child , Genome, Viral , Genotype , Humans , Phylogeny , Rotavirus/genetics
2.
J Virol ; 92(11)2018 06 01.
Article in English | MEDLINE | ID: mdl-29540593

ABSTRACT

Birnaviruses are unconventional members of the group of double-stranded RNA (dsRNA) viruses that are characterized by the lack of a transcriptionally active inner core. Instead, the birnaviral particles organize their genome in ribonucleoprotein complexes (RNPs) composed by dsRNA segments, the dsRNA-binding VP3 protein, and the virally encoded RNA-dependent RNA polymerase (RdRp). This and other structural features suggest that birnaviruses may follow a completely different replication program from that followed by members of the Reoviridae family, supporting the hypothesis that birnaviruses are the evolutionary link between single-stranded positive RNA (+ssRNA) and dsRNA viruses. Here we demonstrate that infectious bursal disease virus (IBDV), a prototypical member of the Birnaviridae family, hijacks endosomal membranes of infected cells through the interaction of a viral protein, VP3, with the phospholipids on the cytosolic leaflet of these compartments for replication. Employing a mutagenesis approach, we demonstrated that VP3 domain PATCH 2 (P2) mediates the association of VP3 with the endosomal membranes. To determine the role of VP3 P2 in the context of the virus replication cycle, we used avian cells stably overexpressing VP3 P2 for IBDV infection. Importantly, the intra- and extracellular virus yields, as well as the intracellular levels of VP2 viral capsid protein, were significantly diminished in cells stably overexpressing VP3 P2. Together, our results indicate that the association of VP3 with endosomes has a relevant role in the IBDV replication cycle. This report provides direct experimental evidence for membranous compartments such as endosomes being required by a dsRNA virus for its replication. The results also support the previously proposed role of birnaviruses as an evolutionary link between +ssRNA and dsRNA viruses.IMPORTANCE Infectious bursal disease (IBD; also called Gumboro disease) is an acute, highly contagious immunosuppressive disease that affects young chickens and spreads worldwide. The etiological agent of IBD is infectious bursal disease virus (IBDV). This virus destroys the central immune organ (bursa of Fabricius), resulting in immunosuppression and reduced responses of chickens to vaccines, which increase their susceptibility to other pathogens. IBDV is a member of Birnaviridae family, which comprises unconventional members of dsRNA viruses, whose replication strategy has been scarcely studied. In this report we show that IBDV hijacks the endosomes of the infected cells for establishing viral replication complexes via the association of the ribonucleoprotein complex component VP3 with the phospholipids in the cytosolic leaflet of endosomal membranes. We show that this interaction is mediated by the VP3 PATCH 2 domain and demonstrate its relevant role in the context of viral infection.


Subject(s)
Endosomes/virology , Infectious bursal disease virus/physiology , Phospholipids/metabolism , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism , Animals , Cell Line , HeLa Cells , Humans , Infectious bursal disease virus/pathogenicity , Mutagenesis , Protein Domains , Quail , Viral Structural Proteins/chemistry , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...