Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stud Health Technol Inform ; 147: 31-40, 2009.
Article in English | MEDLINE | ID: mdl-19593042

ABSTRACT

Production exploitation of cardiac image analysis tools is hampered by the lack of proper IT infrastructure in health institutions, the non trivial integration of heterogeneous codes in coherent analysis procedures, and the need to achieve complete automation of these methods. HealthGrids are promising technologies to address these difficulties. This paper details how they can be complemented by high level problem solving environments such as workflow managers to improve the performance of applications both in terms of execution time and robustness of results. Two of the most important important cardiac image analysis tasks are considered, namely myocardium segmentation and motion estimation in a 4D sequence. Results are shown on the corresponding pipelines, using two different execution environments on the EGEE grid production infrastructure.


Subject(s)
Cardiovascular Diseases/diagnosis , Diagnostic Imaging , Humans
2.
IEEE Trans Med Imaging ; 26(12): 1636-48, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18092734

ABSTRACT

Motion estimation is an important issue in radiation therapy of moving organs. In particular, motion estimates from 4-D imaging can be used to compute the distribution of an absorbed dose during the therapeutic irradiation. We propose a strategy and criteria incorporating spatiotemporal information to evaluate the accuracy of model-based methods capturing breathing motion from 4-D CT images. This evaluation relies on the identification and tracking of landmarks on the 4-D CT images by medical experts. Three different experts selected more than 500 landmarks within 4-D CT images of lungs for three patients. Landmark tracking was performed at four instants of the expiration phase. Two metrics are proposed to evaluate the tracking performance of motion-estimation models. The first metric cumulates over the four instants the errors on landmark location. The second metric integrates the error over a time interval according to an a priori breathing model for the landmark spatiotemporal trajectory. This latter metric better takes into account the dynamics of the motion. A second aim of this paper is to estimate the impact of considering several phases of the respiratory cycle as compared to using only the extreme phases (end-inspiration and end-expiration). The accuracy of three motion estimation models (two image registration-based methods and a biomechanical method) is compared through the proposed metrics and statistical tools. This paper points out the interest of taking into account more frames for reliably tracking the respiratory motion.


Subject(s)
Artifacts , Exhalation , Imaging, Three-Dimensional/methods , Movement , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Humans , Lung/physiology , Models, Biological , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity , Time Factors , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...