Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 17(5): 405-12, 2002 May.
Article in English | MEDLINE | ID: mdl-11888731

ABSTRACT

Radiolabelling and electrochemical impedance measurements were used to characterize the immobilization of single stranded homooligonucleotides onto silica surfaces and their subsequent hybridization with complementary strands. The immobilization procedure consists of grafting an epoxysilane onto microelectronic grade Si/SiO(2) substrates, and coupling oligonucleotides bearing a hexylamine linker onto the epoxy moiety. Radiolabelling was used as a reference method to quantify the amount of immobilized and hybridized oligonucleotides. These results show that the Si/SiO(2) substrates modified with an epoxysilane yield a surface concentration of approximately 10(11) strands/cm(2) for the immobilized oligonucleotides, after vigorous washings, and that approximately 36% of these undergo hybridization with complementary strands. The impedance measurements, which provide a direct means of detecting variations in electrical charge accumulation across the semiconductor/oxide/electrolyte structure when the oxide surface is chemically modified, show that the semiconductor's flat band potential undergoes reproducible shifts of -150 and -100 mV following the immobilization and the hybridization step, respectively. These results demonstrate that electrochemical impedance measurements using chemically modified semiconductor/oxide/electrolyte structures of this type offer a viable alternative for the direct detection of complementary DNA strands upon hybridization.


Subject(s)
Biosensing Techniques , Molecular Probe Techniques , Oligonucleotide Probes , Electric Impedance , Electrochemistry , Radioisotopes , Silanes , Silicon , Silicon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL
...