Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Rev ; 120(20): 11651-11697, 2020 10 28.
Article in English | MEDLINE | ID: mdl-32960589

ABSTRACT

Carbon nanotubes (CNTs) have unique physical and chemical properties that drive their use in a variety of commercial and industrial applications. CNTs are commonly oxidized prior to their use to enhance dispersion in polar solvents by deliberately grafting oxygen-containing functional groups onto CNT surfaces. In addition, CNT surface oxides can be unintentionally formed or modified after CNTs are released into the environment through exposure to reactive oxygen species and/or ultraviolet irradiation. Consequently, it is important to understand the impact of CNT surface oxidation on the environmental fate, transport, and toxicity of CNTs. In this review, we describe the specific role of oxygen-containing functional groups on the important environmental behaviors of CNTs in aqueous media (e.g., colloidal stability, adsorption, and photochemistry) as well as their biological impact. We place special emphasis on the value of systematically varying and quantifying surface oxides as a route to identifying quantitative structure-property relationships. The role of oxygen-containing functional groups in regulating the efficacy of CNT-enabled water treatment technologies and the influence of surface oxides on other carbon-based nanomaterials are also evaluated and discussed.


Subject(s)
Nanotubes, Carbon/chemistry , Oxygen/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Humans , Oxides/chemistry , Oxides/metabolism , Oxygen/chemistry , Surface Properties , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/pharmacology
2.
Talanta ; 218: 121148, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32797904

ABSTRACT

Hydroxyl radicals (∙OH) are powerful oxidizing species formed naturally in the environment or artificially produced to destroy contaminants in water treatment facilities. Their short lifetime and high reactivity, however, present a significant challenge to quantifying their concentration in solution. Herein, we developed a novel method to accurately measure the steady-state ∙OH concentration and total ∙OH dose produced during the UV photolysis of hydrogen peroxide (H2O2) by monitoring the loss of salicylic acid (SA). This information can be acquired using only benchtop UV-Vis spectroscopy, thus expanding measurement capabilities of resource-limited laboratories by eliminating the need for sophisticated instrumentation. To improve the precision with which the rate of SA loss was measured compared to previous methods, we applied principal component analysis (PCA) to fit the UV-Vis spectra collected during SA exposure to ∙OH. For our experimental conditions consisting of 12 mL solutions composed of ≤ 100 mM H2O2 and 0.07 mM SA, the steady-state ∙OH concentration throughout the complete photolysis of H2O2 was 1.33 × 10-11 M ± 1.14 × 10-12 M. This represents more than a ten-fold improvement in reducing the uncertainty of the measurement, with respect to narrowing the 95 % confidence interval, compared to a previous method that employed matrix analysis to process the spectra. Furthermore, the variance of the measured ∙OH concentrations was reduced by a factor of 100 compared to previous methods. Using PCA, the limit-of-detection and limit-of-quantitation for ∙OH are 5.33 × 10-13 M and 1.23 × 10-12 M, respectively. By developing quantitative relationships among ∙OH concentration, H2O2 concentration, and UV exposure time, we also show how to calculate the equivalent exposure to ∙OH generated in natural aquatic environments by indirect photolysis. Finally, we use this methodology to demonstrate that the presence of suspended carbonaceous nanoparticles at concentrations as high as 300 ppm does not affect ∙OH concentration.

3.
Environ Sci Technol ; 54(7): 4160-4170, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32163703

ABSTRACT

The unique physicochemical and luminescent properties of carbon dots (CDs) have motivated research efforts toward their incorporation into commercial products. Increased use of CDs will inevitably lead to their release into the environment where their fate and persistence will be influenced by photochemical transformations, the nature of which is poorly understood. This knowledge gap motivated the present investigation of the effects of direct and indirect photolysis on citric and malic acid-based CDs. Our results indicate that natural sunlight will rapidly and non-destructively photobleach CDs into optically inactive carbon nanoparticles. We demonstrate that after photobleaching, •OH exposure degrades CDs in a two-step process that will span several decades in natural waters. The first step, occurring over several years of •OH exposure, involves depolymerization of the CD structure, characterized by volatilization of over 60% of nascent carbon atoms and the oxidation of nitrogen atoms into nitro groups. This is followed by a slower oxidation of residual carbon atoms first into carboxylic acids and then volatile carbon species, while nitrogen atoms are oxidized into nitrate ions. Considered alongside related CD studies, our findings suggest that the environmental behavior of CDs will be strongly influenced by the molecular precursors used in their synthesis.


Subject(s)
Carbon , Quantum Dots , Luminescence , Nitrogen , Sunlight , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...