Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Respir J ; 59(2)2022 02.
Article in English | MEDLINE | ID: mdl-34172469

ABSTRACT

QUESTION: Cystic fibrosis (CF) is characterised by the accumulation of viscous adherent mucus in the lungs. While several hypotheses invoke a direct relationship with cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction (i.e. acidic airway surface liquid (ASL) pH, low bicarbonate (HCO3 -) concentration, airway dehydration), the dominant biochemical alteration of CF mucus remains unknown. MATERIALS/METHODS: We characterised a novel cell line (CFTR-KO Calu3 cells) and the responses of human bronchial epithelial (HBE) cells from subjects with G551D or F508del mutations to ivacaftor and elexacaftor-tezacaftor-ivacaftor. A spectrum of assays such as short-circuit currents, quantitative PCR, ASL pH, Western blotting, light scattering/refractometry (size-exclusion chromatography with inline multi-angle light scattering), scanning electron microscopy, percentage solids and particle tracking were performed to determine the impact of CFTR function on mucus properties. RESULTS: Loss of CFTR function in Calu3 cells resulted in ASL pH acidification and mucus hyperconcentration (dehydration). Modulation of CFTR in CF HBE cells did not affect ASL pH or mucin mRNA expression, but decreased mucus concentration, relaxed mucus network ultrastructure and improved mucus transport. In contrast with modulator-treated cells, a large fraction of airway mucins remained attached to naïve CF cells following short apical washes, as revealed by the use of reducing agents to remove residual mucus from the cell surfaces. Extended hydration, but not buffers alkalised with sodium hydroxide or HCO3 -, normalised mucus recovery to modulator-treated cell levels. CONCLUSION: These results indicate that airway dehydration, not acidic pH and/or low [HCO3 -], is responsible for abnormal mucus properties in CF airways and CFTR modulation predominantly restores normal mucin entanglement.


Subject(s)
Cystic Fibrosis , Bicarbonates/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Ion Transport , Mucus/metabolism
2.
Sci Transl Med ; 11(486)2019 04 03.
Article in English | MEDLINE | ID: mdl-30944166

ABSTRACT

Although destructive airway disease is evident in young children with cystic fibrosis (CF), little is known about the nature of the early CF lung environment triggering the disease. To elucidate early CF pulmonary pathophysiology, we performed mucus, inflammation, metabolomic, and microbiome analyses on bronchoalveolar lavage fluid (BALF) from 46 preschool children with CF enrolled in the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) program and 16 non-CF disease controls. Total airway mucins were elevated in CF compared to non-CF BALF irrespective of infection, and higher densities of mucus flakes containing mucin 5B and mucin 5AC were observed in samples from CF patients. Total mucins and mucus flakes correlated with inflammation, hypoxia, and oxidative stress. Many CF BALFs appeared sterile by culture and molecular analyses, whereas other samples exhibiting bacterial taxa associated with the oral cavity. Children without computed tomography-defined structural lung disease exhibited elevated BALF mucus flakes and neutrophils, but little/no bacterial infection. Although CF mucus flakes appeared "permanent" because they did not dissolve in dilute BALF matrix, they could be solubilized by a previously unidentified reducing agent (P2062), but not N-acetylcysteine or deoxyribonuclease. These findings indicate that early CF lung disease is characterized by an increased mucus burden and inflammatory markers without infection or structural lung disease and suggest that mucolytic and anti-inflammatory agents should be explored as preventive therapy.


Subject(s)
Cystic Fibrosis/microbiology , Cystic Fibrosis/pathology , Lung/metabolism , Lung/pathology , Mucus/metabolism , Animals , Biomarkers/metabolism , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Inflammation/pathology , Lung/microbiology , Male , Microbiota , Sheep
3.
Am J Respir Crit Care Med ; 199(2): 171-180, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30212240

ABSTRACT

RATIONALE: Airways obstruction with thick, adherent mucus is a pathophysiologic and clinical feature of muco-obstructive respiratory diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis (CF). Mucins, the dominant biopolymer in mucus, organize into complex polymeric networks via the formation of covalent disulfide bonds, which govern the viscoelastic properties of the mucus gel. For decades, inhaled N-acetylcysteine (NAC) has been used as a mucolytic to reduce mucin disulfide bonds with little, if any, therapeutic effects. Improvement of mucolytic therapy requires the identification of NAC deficiencies and the development of compounds that overcome them. OBJECTIVES: Elucidate the pharmacological limitations of NAC and test a novel mucin-reducing agent, P3001, in preclinical settings. METHODS: The study used biochemical (e.g., Western blotting, mass spectrometry) and biophysical assays (e.g., microrheology/macrorheology, spinnability, mucus velocity measurements) to test compound efficacy and toxicity in in vitro and in vivo models and patient sputa. MEASUREMENTS AND MAIN RESULTS: Dithiothreitol and P3001 were directly compared with NAC in vitro and both exhibited superior reducing activities. In vivo, P3001 significantly decreased lung mucus burden in ßENaC-overexpressing mice, whereas NAC did not (n = 6-24 mice per group). In NAC-treated CF subjects (n = 5), aerosolized NAC was rapidly cleared from the lungs and did not alter sputum biophysical properties. In contrast, P3001 acted faster and at lower concentrations than did NAC, and it was more effective than DNase in CF sputum ex vivo. CONCLUSIONS: These results suggest that reducing the viscoelasticity of airway mucus is an achievable therapeutic goal with P3001 class mucolytic agents.


Subject(s)
Asthma/drug therapy , Cystic Fibrosis/drug therapy , Expectorants/therapeutic use , Mucociliary Clearance/drug effects , Mucus/drug effects , Pulmonary Disease, Chronic Obstructive/drug therapy , Acetylcysteine/therapeutic use , Animals , Asthma/physiopathology , Cystic Fibrosis/physiopathology , Disease Models, Animal , Dithiothreitol/therapeutic use , Humans , In Vitro Techniques , Male , Mice , Pulmonary Disease, Chronic Obstructive/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...