Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; : e0147623, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37931127

ABSTRACT

Changing climatic conditions influence parameters associated with the growth of pathogenic Vibrio spp. in the environment and, hence, are linked to increased incidence of vibriosis. Between 1992 and 2022, a long-term increase in Vibrio spp. infections was reported in Florida, USA. Furthermore, a spike in Vibrio spp. infections was reported post Hurricane Ian, a category five storm that made landfall in Florida on 28 September 2022. During October 2022, water and oyster samples were collected from three stations in Lee County in an area significantly impacted by Ian. Vibrio spp. were isolated, and whole-genome sequencing and phylogenetic analysis were done, with a focus on Vibrio parahaemolyticus and Vibrio vulnificus to provide genetic insight into pathogenic strains circulating in the environment. Metagenomic analysis of water samples provided insight with respect to human health-related factors, notably the detection of approximately 12 pathogenic Vibrio spp., virulence and antibiotic resistance genes, and mobile genetic elements, including the SXT/R391 family of integrative conjugative elements. Environmental parameters were monitored as part of a long-term time series analysis done using satellite remote sensing. In addition to anomalous rainfall and storm surge, changes in sea surface temperature and chlorophyll concentration during and after Ian favored the growth of Vibrio spp. In conclusion, genetic analysis coupled with environmental data and remote sensing provides useful public health information and, hence, constitute a valuable tool to proactively detect and characterize environmental pathogens, notably vibrios. These data can aid the development of early warning systems by yielding a larger source of information for public health during climate change. Evidence suggests warming temperatures are associated with the spread of potentially pathogenic Vibrio spp. and the emergence of human disease globally. Following Hurricane Ian, the State of Florida reported a sharp increase in the number of reported Vibrio spp. infections and deaths. Hence, monitoring of pathogens, including vibrios, and environmental parameters influencing their occurrence is critical to public health. Here, DNA sequencing was used to investigate the genomic diversity of Vibrio parahaemolyticus and Vibrio vulnificus, both potential human pathogens, in Florida coastal waters post Hurricane Ian, in October 2022. Additionally, the microbial community of water samples was profiled to detect the presence of Vibrio spp. and other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Long-term environmental data analysis showed changes in environmental parameters during and after Ian were optimal for the growth of Vibrio spp. and related pathogens. Collectively, results will be used to develop predictive risk models during climate change.

2.
Chemosphere ; 274: 129980, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33979933

ABSTRACT

Despite the limitations reported on the efficiency of metals used as sorbents, recent advances in chemical and material sciences make it possible to use remediation technologies based on zero valent iron (ZVI) to restore the ecosystem services of metal-contaminated soils. In addition, recent studies showed that remediation by in situ immobilization could be avoided by taking advantage of the strong magnetic characteristics of ZVI. We combined these well-established concepts and conducted laboratory experiments to predict the removal efficiency of metals from contaminated soils based on their chemical classification into type-A, type-B and borderline metals. The Nieboer-Richardson separation of metal ions based on covalent and ionic indexes was used, and beryllium (Be2+), mercury (Hg2+) and lead (Pb2+) were selected as representative of type-A, type-B and borderline, respectively. The results showed a significant decrease in total metal concentrations of treated soils, with a removal efficiency of about 80% for Be, 90% for Pb and 97% for Hg. This ranking followed the increasing order of the covalent indexes, which are 1.11, 3.36, and 3.92 for Be, Pb and Hg, respectively. Therefore, the ability to form strong covalent bonds with oxygen atoms in maghemite (Fe2O3, γ-Fe2O3) identified on ZVI surfaces seems to drive metal recovery. Validation studies conducted on soil samples collected from sites contaminated with either Pb or Hg, confirmed the above trend. Overall, the results suggest that borderline and type-B metals can be successfully recovered from contaminated soils with rates ≥90%, while the performance would be much lower for type-A metals.


Subject(s)
Metals, Heavy , Soil Pollutants , Ecosystem , Iron , Magnetic Phenomena , Soil , Soil Pollutants/analysis
3.
Environ Sci Technol ; 48(4): 2481-7, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24444016

ABSTRACT

The fate of mercury (Hg) in cement processing and products has drawn intense attention due to its contribution to the ambient emission inventory. Feeding Hg-loaded coal fly ash to the cement kiln introduces additional Hg into the kiln's baghouse filter dust (BFD), and the practice of replacing 5% of cement with the Hg-loaded BFD by cement plants has recently raised environmental and occupational health concerns. The objective of this study was to determine Hg concentration and speciation in BFD as well as to investigate the release of vapor phase Hg from storing and processing BFD-added cement. The results showed that Hg content in the BFD from different seasons ranged from 0.91-1.44 mg/kg (ppm), with 62-73% as soluble inorganic Hg, while Hg in the other concrete constituents were 1-3 orders of magnitude lower than the BFD. Up to 21% of Hg loss was observed in the time-series study while storing the BFD in the open environment by the end of the seventh day. Real-time monitoring in the bench system indicated that high temperature and moisture can facilitate Hg release at the early stage. Ontario Hydro (OH) traps showed that total Hg emission from BFD is dictated by the air exchange surface area. In the bench simulation of concrete processing, only 0.4-0.5% of Hg escaped from mixing and curing BFD-added cement. A follow-up headspace study did not detect Hg release in the following 7 days. In summary, replacing 5% of cement with the BFD investigated in this study has minimal occupational health concerns for concrete workers, and proper storing and mixing of BFD with cement can minimize Hg emission burden for the cement plant.


Subject(s)
Air Pollutants/analysis , Construction Materials/analysis , Dust/analysis , Filtration , Mercury/analysis , Temperature , Time Factors , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...