Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 4190, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30305618

ABSTRACT

How a single bacterium becomes a colony of many thousand cells is important in biomedicine and food safety. Much is known about the molecular and genetic bases of this process, but less about the underlying physical mechanisms. Here we study the growth of single-layer micro-colonies of rod-shaped Escherichia coli bacteria confined to just under the surface of soft agarose by a glass slide. Analysing this system as a liquid crystal, we find that growth-induced activity fragments the colony into microdomains of well-defined size, whilst the associated flow orients it tangentially at the boundary. Topological defect pairs with charges [Formula: see text] are produced at a constant rate, with the [Formula: see text] defects being propelled to the periphery. Theoretical modelling suggests that these phenomena have different physical origins from similar observations in other extensile active nematics, and a growing bacterial colony belongs to a new universality class, with features reminiscent of the expanding universe.


Subject(s)
Escherichia coli/growth & development , Models, Biological , Colony Count, Microbial , Computer Simulation , Stress, Physiological
2.
Phys Rev Lett ; 106(3): 038101, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21405301

ABSTRACT

The hydrodynamic interactions of a swimming bacterium with a neighboring surface can cause it to swim in circles. For example, when E. coli is above a solid surface it had been observed to swim in a clockwise direction. By contrast we observe that, when swimming near a liquid-air interface, the sense of rotation is reversed. We quantitatively account for this through the hydrodynamic interaction of the bacterium with its own mirror image swimming on the opposite side of a perfect-slip boundary. The strength of the coupling is reduced for longer cells, where the torque is spread over a larger length, resulting in longer bacteria swimming in larger circles. We confirm this through precise video measurements of bacterial trajectories and orientations.


Subject(s)
Escherichia coli , Hydrodynamics , Movement , Rotation
3.
Proc Natl Acad Sci U S A ; 107(21): 9541-5, 2010 May 25.
Article in English | MEDLINE | ID: mdl-20457936

ABSTRACT

Self-propelling bacteria are a nanotechnology dream. These unicellular organisms are not just capable of living and reproducing, but they can swim very efficiently, sense the environment, and look for food, all packaged in a body measuring a few microns. Before such perfect machines can be artificially assembled, researchers are beginning to explore new ways to harness bacteria as propelling units for microdevices. Proposed strategies require the careful task of aligning and binding bacterial cells on synthetic surfaces in order to have them work cooperatively. Here we show that asymmetric environments can produce a spontaneous and unidirectional rotation of nanofabricated objects immersed in an active bacterial bath. The propulsion mechanism is provided by the self-assembly of motile Escherichia coli cells along the rotor boundaries. Our results highlight the technological implications of active matter's ability to overcome the restrictions imposed by the second law of thermodynamics on equilibrium passive fluids.


Subject(s)
Escherichia coli/physiology , Escherichia coli/ultrastructure , Microscopy, Electron, Scanning , Movement , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...