Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
AJNR Am J Neuroradiol ; 33(8): 1579-85, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22460341

ABSTRACT

BACKGROUND AND PURPOSE: VBM has been widely used to study GM atrophy in MS. MS lesions lead to segmentation and registration errors that may affect the reliability of VBM results. Improved segmentation and registration have been demonstrated by WM LI before segmentation. DARTEL appears to improve registration versus the USM. Our aim was to compare the performance of VBM-DARTEL versus VBM-USM and the effect of LI in the regional analysis of GM atrophy in MS. MATERIALS AND METHODS: 3T T1 MR imaging scans were acquired from 26 patients with RRMS and 28 age-matched NC. LI replaced WM lesions with normal-appearing WM intensities before image segmentation. VBM analysis was performed in SPM8 by using DARTEL and USM with and without LI, allowing the comparison of 4 VBM methods (DARTEL + LI, DARTEL - LI, USM + LI, and USM - LI). Accuracy of VBM was assessed by using NMI, CC, and a simulation analysis. RESULTS: Overall, DARTEL + LI yielded the most accurate GM maps among the 4 methods (highest NMI and CC, P < .001). DARTEL + LI showed significant GM loss in the bilateral thalami and caudate nuclei in patients with RRMS versus NC. The other 3 methods overestimated the number of regions of GM loss in RRMS versus NC. LI improved the accuracy of both VBM methods. Simulated data suggested the accuracy of the results provided from patient MR imaging analysis. CONCLUSIONS: We introduce a pipeline that shows promise in limiting segmentation and registration errors in VBM analysis in MS.


Subject(s)
Brain/pathology , Image Enhancement , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Multiple Sclerosis, Relapsing-Remitting/pathology , Adult , Atrophy , Female , Humans , Male , Middle Aged
2.
AJNR Am J Neuroradiol ; 32(6): 1138-42, 2011.
Article in English | MEDLINE | ID: mdl-21527570

ABSTRACT

BACKGROUND AND PURPOSE: Spinal cord atrophy is a common feature of MS. However, it is unknown which cord levels are most susceptible to atrophy. We performed whole cord imaging to identify the levels most susceptible to atrophy in patients with MS versus controls and also tested for differences among MS clinical phenotypes. MATERIALS AND METHODS: Thirty-five patients with MS (2 with CIS, 27 with RRMS, 2 with SPMS, and 4 with PPMS phenotypes) and 27 healthy controls underwent whole cord 3T MR imaging. The spinal cord contour was segmented and assigned to bins representing each C1 to T12 vertebral level. Volumes were normalized, and group comparisons were age-adjusted. RESULTS: There was a trend toward decreased spinal cord volume at the upper cervical levels in PPMS/SPMS versus controls. A trend toward increased spinal cord volume throughout the cervical and thoracic cord in RRMS/CIS versus controls reached statistical significance at the T10 vertebral level. A statistically significant decrease was found in spinal cord volume at the upper cervical levels in PPMS/SPMS versus RRMS/CIS. CONCLUSIONS: Opposing pathologic factors impact spinal cord volume measures in MS. Patients with PPMS demonstrated a trend toward upper cervical cord atrophy. However patients with RRMS showed a trend toward increased volume at the cervical and thoracic levels, which most likely reflects inflammation or edema-related cord expansion. With the disease causing both expansion and contraction of the cord, the specificity of spinal cord volume measures for neuroprotective therapeutic effect may be limited.


Subject(s)
Magnetic Resonance Imaging/methods , Multiple Sclerosis/pathology , Spinal Cord/pathology , Adolescent , Adult , Atrophy/pathology , Female , Humans , Male , Middle Aged , Young Adult
3.
AJNR Am J Neuroradiol ; 32(3): 515-21, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21310857

ABSTRACT

BACKGROUND AND PURPOSE: Histopathologic studies have reported widespread cortical lesions in MS; however, in vivo detection by using routinely available pulse sequences is challenging. We investigated the relative frequency and subtypes of cortical lesions and their relationships to white matter lesions and cognitive and physical disability. MATERIALS AND METHODS: Cortical lesions were identified and classified on the basis of concurrent review of 3D FLAIR and 3D T1-weighted IR-SPGR 3T MR images in 26 patients with MS. Twenty-five patients completed the MACFIMS battery. White matter lesion volume, cortical lesion number, and cortical lesion volume were assessed. RESULTS: Overall, 249 cortical lesions were detected. Cortical lesions were present in 24/26 patients (92.3%) (range per patient, 0-30; mean, 9.6 ± 8.8). Most (94.4%, n = 235) cortical lesions were classified as mixed cortical-subcortical (type I); the remaining 5.6% (n = 14) were classified as purely intracortical (type II). Subpial cortical lesions (type III) were not detected. White matter lesion volume correlated with cortical lesion number and cortical lesion volume (r(S) = 0.652, r(S) = 0.705, respectively; both P < .001). After controlling for age, depression, and premorbid intelligence, we found that all MR imaging variables (cortical lesion number, cortical lesion volume, white matter lesion volume) correlated with the SDMT score (R(2) = 0.513, R(2) = 0.449, R(2) = 0.418, respectively; P < .014); cortical lesion number also correlated with the CVLT-II scores (R(2) = 0.542-0.461, P < .043). The EDSS scores correlated with cortical lesion number and cortical lesion volume (r(S) = 0.472, r(S) = 0.404, respectively; P < .05), but not with white matter lesion volume. CONCLUSIONS: Our routinely available imaging method detected many cortical lesions in patients with MS and was useful in their precise topographic characterization in the context of the gray matter-white matter junction. Routinely detectable cortical lesions were related to physical disability and cognitive impairment.


Subject(s)
Brain/pathology , Magnetic Resonance Imaging/methods , Multiple Sclerosis/pathology , Nerve Fibers, Myelinated/pathology , Adult , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...