Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(5)2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32182919

ABSTRACT

Hydrocarbon seepage is overlooked in the marine environment, mostly due to the lack of high-resolution exploration data. This contribution is about the set-up of a relocatable and cost-effective monitoring system, which was tested on two seepages in the Central Adriatic Sea. The two case studies are an oil spill at a water depth of 10 m and scattered biogenic methane seeps at a water depth of 84 m. Gas plumes in the water column were detected with a multibeam system, tightened to sub-seafloor seismic reflection data. Dissolved benthic fluxes of nutrients, metals and Dissolved Inorganic Carbon (DIC) were measured by in situ deployment of a benthic chamber, which was used also for the first time to collect water samples for hydrocarbons characterization. In addition, the concentration of polycyclic aromatic hydrocarbons, as well as major and trace elements were analyzed to provide an estimate of hydrocarbon contamination in the surrounding sediment and to make further inferences on the petroleum system.

2.
J Hazard Mater ; 227-228: 1-8, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22664254

ABSTRACT

A new leaching test on comminuted (0.125-2.0mm gradation) cementitious matrices, designated as Modified-Pore Water (M-PW) test, was developed to evaluate the effect of varying leachate pH (4-12.8) and/or liquid-to-solid, L/S, ratio (0.6-50 dm(3)/kg) on the availability factor, F(AV), of heavy metals. The M-PW test was applied to leaching of lead and zinc ions from ground Portland cement mortar incorporating Municipal Solid Waste Incinerator (MSWI) fly ash. Correlation of M-PW test results (F(AV)-L/S data) allowed the determination of the pore-liquid availability factor, F(AVP), at different leachate pHs. These F(AVP) values were utilized, in conjunction with a kinetic pseudo-diffusional model, to evaluate the leaching behavior of monolithic mortar specimens subjected to dynamic leaching tests (constant leachant pH 4 or 6).A good agreement was found between the effective diffusion coefficients, D(e), of lead and zinc ions calculated by such a methodological approach and those obtained from recognized microstructural models. In contrast, no satisfactory agreement was found when these D(e) values were compared with the ones calculated from the results of other availability tests on granular solid samples (NEN 7341 and AAT tests).


Subject(s)
Coal Ash/chemistry , Construction Materials , Environmental Pollutants/chemistry , Lead/chemistry , Zinc/chemistry , Hydrogen-Ion Concentration , Incineration , Industrial Waste , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...