Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 124(1): 155-165, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29072359

ABSTRACT

AIMS: The aim of this work is to analyse the effect of pH, fungal identity and P chemical nature on microbial development and phosphatase release, discussing solubilization and mineralization processes in P cycling. METHODS AND RESULTS: P solubilizing fungi (Talaromyces flavus, T. helicus L, T. helicus N, T. diversus and Penicillium purpurogenum) were grown under three pH conditions (6, 6·5 and 8·5) and with different inorganic (calcium, iron, aluminium and rock) and organic (lecithin and phytate) P sources. P solubilization, mineralization, growth and phosphatase production were recorded. Acid and neutral environments maximized fungal development and P recycling. P chemical nature changed the phosphatases release pattern depending on the fungal identity. Acid phosphatase activity was higher than alkaline phosphatases, regardless of pH or sample times. Alkaline phosphatases were affected by a combination of those factors. CONCLUSIONS: P chemical nature and pH modify fungal growth, P mineralization and solubilization processes. The underlying fungal identity-dependent metabolism governs the capacity and efficiency of P solubilization and mineralization. P solubilization and mineralization processes are interrelated and simultaneously present in soil fungi. SIGNIFICANCE AND IMPACT OF THE STUDY: This study constitutes a reference work to improve the selection of fungal bioinoculants in different environmental conditions, highlighting their role in P cycling.


Subject(s)
Fungal Proteins/metabolism , Penicillium/enzymology , Penicillium/metabolism , Phosphates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Talaromyces/enzymology , Fungal Proteins/genetics , Hydrogen-Ion Concentration , Penicillium/genetics , Phosphoric Monoester Hydrolases/genetics , Soil/chemistry , Soil Microbiology , Talaromyces/genetics , Talaromyces/metabolism
2.
Curr Microbiol ; 72(1): 41-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26407892

ABSTRACT

The aim of this work was to study phosphate (P) solubilization (and the processes involved in this event) by Talaromyces flavus (BAFC 3125) as a function of carbon and/or nitrogen sources. P solubilization was evaluated in NBRIP media supplemented with different carbon (glucose, sorbitol, sucrose, and fructose) and nitrogen (L-asparagine, urea, ammonium sulfate (AS), and ammonium nitrate (AN) combinations. The highest P solubilization was related to the highest organic acid production (especially gluconic acid) and pH drop for those treatments where glucose was present. Also P solubilization was higher when an inorganic nitrogen source was supplemented to the media when compared to an organic one. Although not being present an organic P source, phosphatase activity was observed. This shows that P mineralization and P solubilization can occur simultaneously, and that P mineralization is not induced by the enzyme substrate. The combination that showed highest P solubilization was for AN-glucose. The highest acid phosphatase activity was for AS-fructose, while for alkaline phosphatase were for AS-fructose and AN-fructose. Acid phosphatase activity was higher than alkaline. P solubilization and phosphatase activity (acid and alkaline) were influenced by the different carbon-nitrogen combinations. A better understanding of phosphate-solubilizing fungi could bring a better use of soil P.


Subject(s)
Calcium Phosphates/metabolism , Carbon/metabolism , Nitrogen/metabolism , Phosphoric Monoester Hydrolases/metabolism , Talaromyces/enzymology , Talaromyces/metabolism , Culture Media/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...