Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(28): 15043-15048, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37410392

ABSTRACT

Cholesterol promotes the structural integrity of the fluid cell membrane and interacts dynamically with many membrane proteins to regulate function. Understanding site-resolved cholesterol structural dynamics is thus important. This long-standing challenge has thus far been addressed, in part, by selective isotopic labeling approaches. Here we present a new 3D solid-state NMR (SSNMR) experiment utilizing scalar 13C-13C polarization transfer and recoupling of the 1H-13C interactions in order to determine average dipolar couplings for all 1H-13C vectors in uniformly 13C-enriched cholesterol. The experimentally determined order parameters (OP) agree exceptionally well with molecular dynamics (MD) trajectories and reveal coupling among several conformational degrees of freedom in cholesterol molecules. Quantum chemistry shielding calculations further support this conclusion and specifically demonstrate that ring tilt and rotation are coupled to changes in tail conformation and that these coupled segmental dynamics dictate the orientation of cholesterol. These findings advance our understanding of physiologically relevant dynamics of cholesterol, and the methods that revealed them have broader potential to characterize how structural dynamics of other small molecules impact their biological functions.


Subject(s)
Cholesterol , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Cell Membrane , Molecular Conformation , Cholesterol/chemistry
2.
Methods ; 138-139: 47-53, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29366688

ABSTRACT

Cholesterol (Chol) is vital for cell function as it is essential to a myriad of biochemical and biophysical processes. The atomistic details of Chol's interactions with phospholipids and proteins is therefore of fundamental interest, and NMR offers unique opportunities to interrogate these properties at high resolution. Towards this end, here we describe approaches for examining the structure and dynamics of Chol in lipid bilayers using high levels of 13C enrichment in combination with magic-angle spinning (MAS) methods. We quantify the incorporation levels and demonstrate high sensitivity and resolution in 2D 13C-13C and 1H-13C spectra, enabling de novo assignments and site-resolved order parameter measurements obtained in a fraction of the time required for experiments with natural abundance sterols. We envision many potential future applications of these methods to study sterol interactions with drugs, lipids and proteins.


Subject(s)
Cholesterol/chemistry , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy/methods , Carbon Isotopes , Cholesterol/analysis , Molecular Structure , Sensitivity and Specificity , Yeasts/metabolism
3.
J Am Chem Soc ; 137(48): 15102-4, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26580003

ABSTRACT

Amphotericin B (AmB) is the archetype for small molecules that form ion channels in living systems and has recently been shown to replace a missing protein ion transporter and thereby restore physiology in yeast. Molecular modeling studies predict that AmB self-assembles in lipid membranes with the polyol region lining a channel interior that funnels to its narrowest region at the C3-hydroxyl group. This model predicts that modification of this functional group would alter conductance of the AmB ion channel. To test this hypothesis, the C3-hydroxyl group was synthetically deleted, and the resulting derivative, C3deoxyAmB (C3deOAmB), was characterized using multidimensional NMR experiments and single ion channel electrophysiology recordings. C3deOAmB possesses the same macrocycle conformation as AmB and retains the capacity to form transmembrane ion channels, yet the conductance of the C3deOAmB channels is 3-fold lower than that of AmB channels. Thus, the C3-hydroxyl group plays an important role in AmB ion channel conductance, and synthetic modifications at this position may provide an opportunity for further tuning of channel functions.


Subject(s)
Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Amphotericin B/chemistry , Antifungal Agents/chemistry , Ion Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...