Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 151(16): 164706, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31675857

ABSTRACT

Singlet exciton fission is a spin-allowed process in organic semiconductors by which one absorbed photon generates two triplet excitons. Theory predicts that singlet fission is mediated by intermolecular charge-transfer states in solid-state materials with appropriate singlet-triplet energy spacing, but direct evidence for the involvement of such states in the process has not been provided yet. Here, we report on the observation of subpicosecond singlet fission in mixed films of pentacene and perfluoropentacene. By combining transient spectroscopy measurements to nonadiabatic quantum-dynamics simulations, we show that direct excitation in the charge-transfer absorption band of the mixed films leads to the formation of triplet excitons, unambiguously proving that they act as intermediate states in the fission process.

2.
Cryst Growth Des ; 19(11): 6058-6066, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31728132

ABSTRACT

Understanding the behavior and properties of molecules assembled in thin layers requires knowledge of their crystalline packing. The drug phenytoin (5,5-diphenylhydantoin) is one of the compounds that can be grown as a surface induced polymorph. By using grazing incidence X-ray diffraction, the monoclinic unit cell of the new form II can be determined, but, due to crystal size and the low amount of data, a full solution using conventional structure solving strategies fails. In this work, the full solution has been obtained by combining computational structure generation and experimental results. The comparison between the bulk and the new surface induced phase reveals significant packing differences of the hydrogen-bonding network, which might be the reason for the faster dissolution of form II with respect to form I. The results are very satisfactory, and the method might be adapted for other systems, where, due to the limited amount of experimental data, one must rely on additional approaches to gain access to more detailed information to understand the solid-state behavior.

3.
Cryst Growth Des ; 19(11): 6067-6073, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-33828438

ABSTRACT

A method for structure solution in thin films that combines grazing incidence X-ray diffraction data analysis and crystal structure prediction was presented in a recent work (Braun et al. Cryst. Growth Des.2019, DOI: 10.1021/acs.cgd.9b00857). Applied to phenytoin form II, which is only detected in films, the approach gave a very reasonable, but not fully confirmed, candidate structure with Z = 4 and Z' = 2. In the present work, we demonstrate how, by calculating and measuring the crystal Raman spectrum in the low wavenumber energy region with the aim of validating the candidate structure, this can be further refined. In fact, we find it to correspond to a saddle point of the energy landscape of the system, from which a minimum of lower symmetry may be reached. With the new structure, with Z = 4 and Z' = 2, we finally obtain an excellent agreement between experimental and calculated Raman spectra.

4.
J Chem Theory Comput ; 14(8): 4380-4390, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30021070

ABSTRACT

This work assesses the reliability of different van der Waals (vdW) methods to describe lattice vibrations of molecular crystals in the framework of density functional theory (DFT). To accomplish this task, calculated and experimental lattice phonon Raman spectra of a pool of organic molecular crystals are compared. We show that the many-body dispersion (MBD@rsSCS) van der Waals method of Ambrosetti et al. and the pairwise method of Grimme et al. (D3-BJ) outperform the other tested approaches (i.e., the D2 method of Grimme, the TS method of Tkatchenko and Scheffler, and the nonlocal functional vdW-DF-optPBE of Klimes et al.). For the worse-performing approaches the results could not even be fixed by the introduction of scaling parameters, as commonly used for high-energy intramolecular vibrations. Interestingly, when using the experimentally determined unit cell parameters, DFT calculations using the PBE functional without corrections for long-range vdW interactions provide spectra of similar accuracy as the MBD@rsSCS and D3-BJ simulations.

5.
J Phys Chem Lett ; 8(15): 3690-3695, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28731723

ABSTRACT

A combined experimental and theoretical approach, consisting of lattice phonon Raman spectroscopy and density functional theory (DFT) calculations, is proposed as a tool for lattice dynamics characterization and polymorph phase identification. To illustrate the reliability of the method, the lattice phonon Raman spectra of two polymorphs of the molecule 2,7-dioctyloxy[1]benzothieno[3,2-b]benzothiophene are investigated. We show that DFT calculations of the lattice vibrations based on the known crystal structures, including many-body dispersion van der Waals (MBD-vdW) corrections, predict experimental data within an accuracy of ≪5 cm-1 (≪0.6 meV). Due to the high accuracy of the simulations, they can be used to unambiguously identify different polymorphs and to characterize the nature of the lattice vibrations and their relationship to the structural properties. More generally, this work implies that DFT-MBD-vdW is a promising method to describe also other physical properties that depend on lattice dynamics like charge transport.

6.
Langmuir ; 29(28): 8950-8, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23597166

ABSTRACT

We employ atomistic molecular dynamics simulations to predict the alignment and anchoring strength of a typical nematic liquid crystal, 4-n-pentyl-4'-cyano biphenyl (5CB), on different forms of silica. In particular, we study a thin (~20 nm) film of 5CB supported on surfaces of crystalline (cristobalite) and amorphous silica of different roughness. We find that the orientational order at the surface and the anchoring strength depend on the morphology of the silica surface and its roughness. Cristobalite yields a uniform planar orientation and increases the order at the surface with respect to the bulk whereas amorphous glass has a disordering effect. Despite the low order at the amorphous surfaces, a planar orientation is established with a persistence length into the film higher than the one obtained for cristobalite.

7.
J Am Chem Soc ; 134(42): 17671-9, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-23039271

ABSTRACT

The photochemical reaction of 9,10-dinitroanthracene (DNO(2)A) to anthraquinone (AQ) + 2NO has been studied by means of lattice phonon Raman spectroscopy in the spectral region 10-150 cm(-1). In fact, crystal-to-crystal transformations are best revealed by following changes in the lattice modes, as even small modifications in the crystal structure lead to dramatic changes in symmetry and selection rules of vibrational modes. While analysis of the lattice modes allowed for the study of the physical changes, the chemical transformation was monitored by measuring the intramolecular Raman-active modes of both reactant and product. On the basis of the experimental data it has been possible, at a microscopic level, to infer crucial information on the reaction mechanism by simultaneously detecting molecular (vibrational modes) and crystal structure (lattice phonons) modifications during the reaction. At a macroscopic level we have detected an intriguing relationship between incident photons and mechanical strain, which manifests itself as a striking bending and unfolding of the specimens under irradiation. To clarify the mechanisms underlying the relationship between incoming light and molecular environment, we have extended the study to high pressure up to 2 GPa. It has been found that above 1 GPa the photoreaction becomes inhibited. The solid-state transformation has also been theoretically modeled, thus identifying the reaction pathway along which the DNO(2)A crystal lattice deforms to finally become the crystal lattice of the AQ product.


Subject(s)
Anthracenes/chemistry , Anthraquinones/chemical synthesis , Anthraquinones/chemistry , Crystallization , Photochemical Processes , Pressure , Spectrum Analysis, Raman
8.
J Chem Phys ; 134(24): 244508, 2011 Jun 28.
Article in English | MEDLINE | ID: mdl-21721644

ABSTRACT

The thermochemical constants for the oxidation of tyrosine and tryptophan through proton coupled electron transfer in aqueous solution have been computed applying a recently developed density functional theory (DFT) based molecular dynamics method for reversible elimination of protons and electrons. This method enables us to estimate the solvation free energy of a proton (H(+)) in a periodic model system from the free energy for the deprotonation of an aqueous hydronium ion (H(3)O(+)). Using the computed solvation free energy of H(+) as reference, the deprotonation and oxidation free energies of an aqueous species can be converted to pK(a) and normal hydrogen electrode (NHE) potentials. This conversion requires certain thermochemical corrections which were first presented in a similar study of the oxidation of hydrobenzoquinone [J. Cheng, M. Sulpizi, and M. Sprik, J. Chem. Phys. 131, 154504 (2009)]. Taking a different view of the thermodynamic status of the hydronium ion, these thermochemical corrections are revised in the present work. The key difference with the previous scheme is that the hydronium is now treated as an intermediate in the transfer of the proton from solution to the gas-phase. The accuracy of the method is assessed by a detailed comparison of the computed pK(a), NHE potentials and dehydrogenation free energies to experiment. As a further application of the technique, we have analyzed the role of the solvent in the oxidation of tyrosine by the tryptophan radical. The free energy change computed for this hydrogen atom transfer reaction is very similar to the gas-phase value, in agreement with experiment. The molecular dynamics results however, show that the minimal solvent effect on the reaction free energy is accompanied by a significant reorganization of the solvent.


Subject(s)
Molecular Dynamics Simulation , Tryptophan/chemistry , Tyrosine/chemistry , Electrodes , Electrons , Hydrogen/chemistry , Oxidation-Reduction , Protons , Quantum Theory , Thermodynamics
9.
Chemphyschem ; 10(11): 1783-8, 2009 Aug 03.
Article in English | MEDLINE | ID: mdl-19421986

ABSTRACT

Molecular dynamics simulations are presented for "bulklike" and "filmlike" monolayers of pentacene deposited on a slab of amorphous silica. The two simulated systems, which mainly differ in the tilt angle between the pentacene molecules and the silica surface, exhibit structural and energetic properties that match the available measurements. The bulklike monolayer, the structure of which corresponds to that of the low-temperature polymorph of crystalline pentacene, is stable. The filmlike monolayer, in which the molecules are most closely normal to the surface, is instead thermodynamically metastable, in agreement with the experimental evidence.

10.
J Phys Chem B ; 112(40): 12783-9, 2008 Oct 09.
Article in English | MEDLINE | ID: mdl-18793011

ABSTRACT

Car-Parrinello molecular dynamics (CPMD) calculations are presented for a Na (+)(Phe) complex in aqueous solution and for various stable Na (+)(Phe) complexes and Na (+)(H 2O) n clusters in the gas phase (with up to six water molecules). The CPMD results are compared to available experimental and ab initio reference data, to DFT results obtained with various combinations of density functionals and basis sets, and to previous classical mechanics MD simulations. The agreement with the reference data in the gas phase validates the CPMD method, showing that it is a valid approach for studying these systems and that it describes correctly the competing Na (+)-Phe and Na (+)-H 2O interactions. Analysis of MD trajectories reveals that the Na (+)(Phe) complex in aqueous solution maintains a stable configuration in which the Na (+) cation hovers above the phenyl ring, at an average distance of 3.85 A from the ring center, while remaining strongly bound to one of the carboxylic oxygens of Phe. Constrained MD simulations indicate that the free energy barrier opposing dissociation of the complex exceeds 5.5 kcal/mol. We thus confirm that "cation- pi" interactions between alcali cations and the pi ring, combined with other kinds of interactions, may allow aromatic amino acids to overcome the competition with water in binding a cation.

11.
J Phys Chem A ; 112(29): 6715-22, 2008 Jul 24.
Article in English | MEDLINE | ID: mdl-18593103

ABSTRACT

Using sexithiophene as a benchmark compound, we present a very effective strategy for searching the potential energy minima of a crystalline material, described in terms of rigid molecules with Coulombic and atom-atom interactions. The strategy involves uniform sampling of the many-body energy hypersurface, mechanical identification of all constraints deriving from the crystallographic symmetry, and a "sight-resight" method, originally introduced in wildlife ecology, for assessing the completeness of the search. Thousands of distinct potential energy minima, with a surprising variety of structural arrangements, are identified for sexithiophene. Despite the large number of competing minima, the system presents a small number of deep minima, with very different structures and not particularly congested in energy or density. The two deepest minima correspond to the structures of the two known experimental polymorphs, which are satisfactorily described.

12.
J Phys Chem A ; 112(5): 1085-9, 2008 Feb 07.
Article in English | MEDLINE | ID: mdl-18197650

ABSTRACT

We present a strategy for comparing the global properties of competing potential models. By systematically sampling the potential energy surface of crystalline tetracene, we assess how the number, energy and structure of its minima are modified by switching on (or off) the Coulombic interactions. The increased complexity of the Coulombic potential leads to a more "rugged" potential energy surface with a larger number of minima, but the effect is not large. In fact, we find a subset of minima stable only in presence of the Coulombic interactions, a smaller subset stable only in their absence, and a large majority stable in both cases. Among these, there is a very good, but not perfect, correlation between the energies and the structures computed with and without the electrostatic interactions. Although electrostatic interactions play a role even in a rigid nonpolar molecule such as tetracene, they are not as crucial as often believed, because altering the electrostatic model (or switching it off completely) leads, in most cases, to equivalent results.

13.
J Phys Chem A ; 110(37): 10858-62, 2006 Sep 21.
Article in English | MEDLINE | ID: mdl-16970382

ABSTRACT

We have systematically sampled the potential energy surface of crystalline tetracene to identify its local minima. These minima represent all possible stable configurations and constitute the "inherent structures" of the system. The crystal is described in terms of rigid molecules with Coulombic and atom-atom interactions. Hundreds of distinct minima are identified, mostly belonging to the space groups P (triclinic) and P2(1)/c (monoclinic), with a variety of structural arrangements. The deepest minimum corresponds to the high temperature-low pressure polymorph. This is the only polymorph with a completely described X-ray structure, which is satisfactorily described by the calculations. The next deep minimum is likely to correspond to the low temperature-high pressure polymorph, which has been experimentally identified but not yet fully described.

14.
J Phys Chem B ; 109(48): 23016-23, 2005 Dec 08.
Article in English | MEDLINE | ID: mdl-16853999

ABSTRACT

The competition between cation-pi interaction and aqueous solvation for the Na+ ion has been investigated by molecular dynamics simulations, using the phenylalanine amino acid as the test pi system. Starting from one of the best standard force fields, we have developed new parameters that significantly improve the agreement with experimental and high quality quantum mechanical results for the complexes of Na+ with phenylalanine, benzene, and water. The modified force field performs very well in forecasting energy and geometry of cation coordination for the complexes. Next, analysis of MD trajectories and steered MD simulations indicate that the Na+-phenylalanine complex survives for a significant time in aqueous solution and that the free energy barrier opposing dissociation of the complex is sizable. Finally, we analyze the role of different intermolecular interactions in determining the preference for cation-pi bonding with respect to aqueous solvation. We thus confirm that the Na+-phenylalanine stabilization energy may overcome the interactions with water.

15.
J Am Chem Soc ; 124(10): 2128-9, 2002 Mar 13.
Article in English | MEDLINE | ID: mdl-11878962

ABSTRACT

We have performed a lattice dynamics calculation to compute the "inherent structures" of minimum potential energy for pentacene, starting from available X-ray data. The calculation shows that two distinct bulk crystalline phases of pentacene exist, with very subtle structural differences but clearly different phonon spectra. The method of crystal growth (from solution or vapor) is not the determining factor for obtaining either structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...