Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 119(9): 097001, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28949586

ABSTRACT

Spin excitations in the overdoped high temperature superconductors Tl_{2}Ba_{2}CuO_{6+δ} and (Bi,Pb)_{2}(Sr,La)_{2}CuO_{6+δ} were investigated by resonant inelastic x-ray scattering (RIXS) as functions of doping and detuning of the incoming photon energy above the Cu-L_{3} absorption peak. The RIXS spectra at optimal doping are dominated by a paramagnon feature with peak energy independent of photon energy, similar to prior results on underdoped cuprates. Beyond optimal doping, the RIXS data indicate a sharp crossover to a regime with a strong contribution from incoherent particle-hole excitations whose maximum shows a fluorescencelike shift upon detuning. The spectra of both compound families are closely similar, and their salient features are reproduced by exact-diagonalization calculations of the single-band Hubbard model on a finite cluster. The results are discussed in the light of recent transport experiments indicating a quantum phase transition near optimal doping.

2.
Phys Rev Lett ; 114(21): 217003, 2015 May 29.
Article in English | MEDLINE | ID: mdl-26066453

ABSTRACT

We used resonant inelastic x-ray scattering (RIXS) with and without analysis of the scattered photon polarization, to study dispersive spin excitations in the high temperature superconductor YBa_{2}Cu_{3}O_{6+x} over a wide range of doping levels (0.1≤x≤1). The excitation profiles were carefully monitored as the incident photon energy was detuned from the resonant condition, and the spin excitation energy was found to be independent of detuning for all x. These findings demonstrate that the largest fraction of the spin-flip RIXS profiles in doped cuprates arises from magnetic collective modes, rather than from incoherent particle-hole excitations as recently suggested theoretically [Benjamin et al. Phys. Rev. Lett. 112, 247002 (2014)]. Implications for the theoretical description of the electron system in the cuprates are discussed.

3.
Nat Commun ; 5: 5875, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25522689

ABSTRACT

Electronic inhomogeneity appears to be an inherent characteristic of the enigmatic cuprate superconductors. Here we report the observation of charge-density-wave correlations in the model cuprate superconductor HgBa2CuO(4+δ) (T(c)=72 K) via bulk Cu L3-edge-resonant X-ray scattering. At the measured hole-doping level, both the short-range charge modulations and Fermi-liquid transport appear below the same temperature of about 200 K. Our result points to a unifying picture in which these two phenomena are preceded at the higher pseudogap temperature by q=0 magnetic order and the build-up of significant dynamic antiferromagnetic correlations. The magnitude of the charge modulation wave vector is consistent with the size of the electron pocket implied by quantum oscillation and Hall effect measurements for HgBa2CuO(4+δ) and with corresponding results for YBa2Cu3O(6+δ), which indicates that charge-density-wave correlations are universally responsible for the low-temperature quantum oscillation phenomenon.

4.
Rev Sci Instrum ; 85(11): 115104, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430146

ABSTRACT

Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B4C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L3 edge on a high-Tc superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

5.
Nat Commun ; 5: 3714, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24762677

ABSTRACT

The evolution of electronic (spin and charge) excitations upon carrier doping is an extremely important issue in superconducting layered cuprates and the knowledge of its asymmetry between electron- and hole-dopings is still fragmentary. Here we combine X-ray and neutron inelastic scattering measurements to track the doping dependence of both spin and charge excitations in electron-doped materials. Copper L3 resonant inelastic X-ray scattering spectra show that magnetic excitations shift to higher energy upon doping. Their dispersion becomes steeper near the magnetic zone centre and they deeply mix with charge excitations, indicating that electrons acquire a highly itinerant character in the doped metallic state. Moreover, above the magnetic excitations, an additional dispersing feature is observed near the Γ-point, and we ascribe it to particle-hole charge excitations. These properties are in stark contrast with the more localized spin excitations (paramagnons) recently observed in hole-doped compounds even at high doping levels.

6.
Nat Mater ; 12(11): 1019-23, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23913170

ABSTRACT

One of the most intensely studied scenarios of high-temperature superconductivity (HTS) postulates pairing by exchange of magnetic excitations. Indeed, such excitations have been observed up to optimal doping in the cuprates. In the heavily overdoped regime, neutron scattering measurements indicate that magnetic excitations have effectively disappeared, and this has been argued to cause the demise of HTS with overdoping. Here we use resonant inelastic X-ray scattering, which is sensitive to complementary parts of reciprocal space, to measure the evolution of the magnetic excitations in La(2-x)Sr(x)CuO4 across the entire phase diagram, from a strongly correlated insulator (x = 0) to a non-superconducting metal (x = 0.40). For x = 0, well-defined magnon excitations are observed. These magnons broaden with doping, but they persist with a similar dispersion and comparable intensity all the way to the non-superconducting, heavily overdoped metallic phase. The destruction of HTS with overdoping is therefore caused neither by the general disappearance nor by the overall softening of magnetic excitations. Other factors, such as the redistribution of spectral weight, must be considered.

SELECTION OF CITATIONS
SEARCH DETAIL
...