Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Acta Neuropathol ; 147(1): 65, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38557897

ABSTRACT

Human microglia are critically involved in Alzheimer's disease (AD) progression, as shown by genetic and molecular studies. However, their role in tau pathology progression in human brain has not been well described. Here, we characterized 32 human donors along progression of AD pathology, both in time-from early to late pathology-and in space-from entorhinal cortex (EC), inferior temporal gyrus (ITG), prefrontal cortex (PFC) to visual cortex (V2 and V1)-with biochemistry, immunohistochemistry, and single nuclei-RNA-sequencing, profiling a total of 337,512 brain myeloid cells, including microglia. While the majority of microglia are similar across brain regions, we identified a specific subset unique to EC which may contribute to the early tau pathology present in this region. We calculated conversion of microglia subtypes to diseased states and compared conversion patterns to those from AD animal models. Targeting genes implicated in this conversion, or their upstream/downstream pathways, could halt gene programs initiated by early tau progression. We used expression patterns of early tau progression to identify genes whose expression is reversed along spreading of spatial tau pathology (EC > ITG > PFC > V2 > V1) and identified their potential involvement in microglia subtype conversion to a diseased state. This study provides a data resource that builds on our knowledge of myeloid cell contribution to AD by defining the heterogeneity of microglia and brain macrophages during both temporal and regional pathology aspects of AD progression at an unprecedented resolution.


Subject(s)
Alzheimer Disease , Animals , Humans , Alzheimer Disease/pathology , tau Proteins/genetics , tau Proteins/metabolism , Transcriptome , Brain/pathology , Myeloid Cells/pathology , Microglia/pathology , Amyloid beta-Peptides/metabolism
2.
Exp Neurol ; 364: 114395, 2023 06.
Article in English | MEDLINE | ID: mdl-37003487

ABSTRACT

In mice, dietary cuprizone causes brain demyelination with subsequent spontaneous remyelination upon return to normal chow. Heavy water (2H2O) labeling with mass spectrometric analysis can be used to measure brain de novo synthesis of several myelin components including cholesterol, phospholipids, galactocereboside (GalC) and myelin-associated proteins. 24-hydroxycholesterol (24-OHC), the major metabolite of brain cholesterol, is detected in blood and is believed to be specifically derived from CNS cholesterol metabolism. We assessed changes in syntheses of myelin components in brain and of blood sterols during cuprizone-induced experimental demyelination and remyelination, with and without thyroid hormone (T3) treatment. Mice were fed cuprizone for 4 weeks, then returned to control diet and treated with either placebo or T3 (0.005 mg/day). 2H2O was administered for the last 14 days of cuprizone diet, and for either 6, 12 or 19 days of treatment during recovery from cuprizone, after which blood and corpus callosum (CC) samples were collected (n = 5/time point/treatment). 2H incorporation into cholesterol and 24-OHC in blood and CC, and incorporation into phospholipid (PL)-palmitate, GalC, myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) in CC were measured. Cuprizone significantly (p < 0.05) decreased syntheses of cholesterol, 24-OHC, GalC, MBP, CNPase and PL-palmitate in the CC and these effects were all reversed during recovery. T3 treatment significantly (p < 0.05) increased syntheses of cholesterol, 24-OHC and palmitate compared to placebo. 24-OHC and cholesterol turnover rates in brain and blood were nearly identical and 24-OHC rates in blood paralleled rates in CC, indicating that blood 24-OHC derives primarily from the brain and reflects oligodendrocyte function. In summary, changes in synthesis of several lipid and protein components in brain during cuprizone-induced demyelination and remyelination are measurable through stable isotope labeling. Blood 24-OHC turnover rates closely reflect flux rates of brain cholesterol in response to cuprizone and T3, which alter oligodendrocyte function. Labeling of blood 24-OHC has potential as a non-invasive marker of brain de novo cholesterol synthesis and breakdown rates in demyelinating conditions.


Subject(s)
Demyelinating Diseases , Remyelination , Mice , Animals , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Demyelinating Diseases/drug therapy , Demyelinating Diseases/metabolism , Brain/metabolism , Myelin Sheath , Corpus Callosum/metabolism , Oligodendroglia , Myelin Proteins/metabolism , Cholesterol/adverse effects , Cholesterol/metabolism , Biomarkers/metabolism , Mice, Inbred C57BL , Disease Models, Animal
3.
Mol Neurodegener ; 18(1): 10, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36732784

ABSTRACT

BACKGROUND: Mouse models that overexpress human mutant Tau (P301S and P301L) are commonly used in preclinical studies of Alzheimer's Disease (AD) and while several drugs showed therapeutic effects in these mice, they were ineffective in humans. This leads to the question to which extent the murine models reflect human Tau pathology on the molecular level. METHODS: We isolated insoluble, aggregated Tau species from two common AD mouse models during different stages of disease and characterized the modification landscape of the aggregated Tau using targeted and untargeted mass spectrometry-based proteomics. The results were compared to human AD and to human patients that suffered from early onset dementia and that carry the P301L Tau mutation. RESULTS: Both mouse models accumulate insoluble Tau species during disease. The Tau aggregation is driven by progressive phosphorylation within the proline rich domain and the C-terminus of the protein. This is reflective of early disease stages of human AD and of the pathology of dementia patients carrying the P301L Tau mutation. However, Tau ubiquitination and acetylation, which are important to late-stage human AD are not represented in the mouse models. CONCLUSION: AD mouse models that overexpress human Tau using risk mutations are a suitable tool for testing drug candidates that aim to intervene in the early formation of insoluble Tau species promoted by increased phosphorylation of Tau.


Subject(s)
Alzheimer Disease , Tauopathies , Humans , Mice , Animals , tau Proteins/genetics , tau Proteins/metabolism , Mice, Transgenic , Tauopathies/metabolism , Alzheimer Disease/metabolism , Phosphorylation , Disease Models, Animal
4.
Eur J Pharmacol ; 934: 175301, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36191631

ABSTRACT

In this study we aimed to reduce tau pathology, a hallmark of Alzheimer's Disease (AD), by activating mTOR-dependent autophagy in a transgenic mouse model of tauopathy by long-term dosing of animals with mTOR-inhibitors. Rapamycin treatment reduced the burden of hyperphosphorylated and aggregated pathological tau in the cerebral cortex only when applied to young mice, prior to the emergence of pathology. Conversely, PQR530 which exhibits better brain exposure and superior pharmacokinetic properties, reduced tau pathology even when the treatment started after the onset of pathology. Our results show that dosing animals twice per week with PQR530 resulted in intermittent, rather than sustained target engagement. Nevertheless, this pulse-like mTOR inhibition followed by longer intervals of re-activation was sufficient to reduce tau pathology in the cerebral cortex in P301S tau transgenic mice. This suggests that balanced therapeutic dosing of blood-brain-barrier permeable mTOR-inhibitors can result in a disease-modifying effect in AD and at the same time prevents toxic side effects due to prolonged over activation of autophagy.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , tau Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism , Mice, Transgenic , Brain , Sirolimus/pharmacology , Disease Models, Animal
5.
Neurol Ther ; 7(1): 103-128, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29542041

ABSTRACT

INTRODUCTION: Antigen-specific immunotherapy could provide a targeted approach for the treatment of multiple sclerosis that removes the need for broad-acting immunomodulatory drugs. ATX-MS-1467 is a mixture of four peptides identified as the main immune-dominant disease-associated T-cell epitopes in myelin basic protein (MBP), an autoimmune target for activated autoreactive T cells in multiple sclerosis. Previous animal studies have shown that ATX-MS-1467 treatment prevented the worsening of signs of disease in experimental autoimmune encephalitis (EAE) in the humanized (DR2 × Ob1)F1 mouse in a dose-dependent fashion. METHODS AND RESULTS: Our study extends these observations to show that subcutaneous treatment with 100 µg of ATX-MS-1467 after induction of EAE in the same mouse model reversed established clinical disability (p < 0.0001) and histological markers of inflammation and demyelination (p < 0.001) compared with vehicle-treated animals; furthermore, in longitudinal magnetic resonance imaging analyses, disruption of blood-brain barrier integrity was reversed, compared with vehicle-treated animals (p < 0.05). Chronic treatment with ATX-MS-1467 was associated with an enduring shift from a pro-inflammatory to a tolerogenic state in the periphery, as shown by an increase in interleukin 10 secretion, relative to interleukin 2, interleukin 17 and interferon γ, a decrease in splenocyte proliferation and an increase in interleukin 10+ Foxp3- T cells in the spleen. CONCLUSION: Our results suggest that ATX-MS-1467 can induce splenic iTregs and long-term tolerance to MBP with the potential to partially reverse the pathology of multiple sclerosis, particularly during the early stages of the disease. FUNDING: EMD Serono, Inc., a business of Merck KGaA.

6.
Bioorg Med Chem Lett ; 26(17): 4362-6, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27491711

ABSTRACT

Inhibition of microtubule affinity regulating kinase (MARK) represents a potentially attractive means of arresting neurofibrillary tangle pathology in Alzheimer's disease. This manuscript outlines efforts to optimize a pyrazolopyrimidine series of MARK inhibitors by focusing on improvements in potency, physical properties and attributes amenable to CNS penetration. A unique cylcyclohexyldiamine scaffold was identified that led to remarkable improvements in potency, opening up opportunities to reduce MW, Pgp efflux and improve pharmacokinetic properties while also conferring improved solubility.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Heterocyclic Compounds/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Crystallography, X-Ray , Dogs , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds/pharmacology , Humans , Inhibitory Concentration 50 , Molecular Weight , Rats , Solubility
7.
Neuropharmacology ; 108: 229-37, 2016 09.
Article in English | MEDLINE | ID: mdl-27039042

ABSTRACT

Neurosteroids such as progesterone and allopregnanolone have been shown to exert neuroprotective effects under a variety of pathological or insult conditions, and there is evidence that the neurosteroid system is perturbed in Multiple Sclerosis (MS) patients. Neurosteroids are synthesized in the central nervous system (CNS) through a series of metabolic transformations, beginning with a rate-limiting step of cholesterol transport through the outer mitochondrial membrane via the transporter translocator protein (TSPO). We examined the effects of etifoxine and XBD-173, two different brain penetrant TSPO agonists, for their ability to ameliorate clinical signs in two different experimental autoimmune encephalitis (EAE) models. Etifoxine, as previously reported, was efficacious in EAE, while XBD-173 was not. Surprisingly, XBD-173, but not etifoxine elevated relevant neurosteroids in brain of female rats and differed in its ability to exert anti-inflammatory and direct neuroprotective effects in vitro as compared to etifoxine. We conclude that the neurosteroid elevations produced in brain by XBD-173 are not sufficient to ameliorate EAE and suggest that etifoxine may have additional mechanisms of action that provide therapeutic benefit in this model system.


Subject(s)
Disease Models, Animal , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Oxazines/metabolism , Purines/metabolism , Receptors, GABA/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Dose-Response Relationship, Drug , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Ligands , Mice , Mice, Inbred C57BL , Oxazines/therapeutic use , Purines/therapeutic use , Rats , Treatment Outcome
8.
Neuropharmacology ; 79: 307-13, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24326295

ABSTRACT

Neurofibrillary tangles (NFT), mainly consisting of fibrillar aggregates of hyperphosphorylated tau, are a defining pathological feature of Alzheimer's Disease and other tauopathies. Progressive accumulation of tau into NFT is considered to be a toxic cellular event causing neurodegeneration. Tau is subject to O-linked N-acetylglucosamine (O-GlcNAc) modification and O-GlcNAcylation of tau has been suggested to regulate tau phosphorylation. We tested if an increase in tau O-GlcNAcylation affected tau phosphorylation and aggregation in the rTg4510 tau transgenic mouse model. Acute treatment of rTg4510 mice with an O-GlcNAcase inhibitor transiently reduced tau phosphorylation at epitopes implicated in tau pathology. More importantly, long-term inhibitor treatment strongly increased tau O-GlcNAcylation, reduced the number of dystrophic neurons, and protected against the formation of pathological tau species without altering the phosphorylation of non-pathological tau. This indicates that O-GlcNAcylation prevents the aggregation of tau in a manner that does not affect its normal phosphorylation state. Collectively, our results support O-GlcNAcase inhibition as a potential therapeutic strategy for the treatment of Alzheimer's Disease and other tauopathies.


Subject(s)
Acetylglucosamine/metabolism , Neurons/drug effects , Neuroprotective Agents/pharmacology , Pyrans/pharmacology , Tauopathies/drug therapy , Thiazoles/pharmacology , tau Proteins/metabolism , Acetylglucosamine/antagonists & inhibitors , Animals , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , CA3 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/pathology , Disease Models, Animal , Female , Glycosylation , Male , Mice , Mice, Transgenic , Neurons/metabolism , Neurons/pathology , Phosphorylation/drug effects , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/antagonists & inhibitors
9.
J Neurosurg Spine ; 10(2): 171-6, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19278333

ABSTRACT

OBJECT: Sonic hedgehog (Shh) is a glycoprotein molecule that upregulates the transcription factor Gli1. The Shh protein plays a critical role in the proliferation of endogenous neural precursor cells when directly injected into the spinal cord after a spinal cord injury in adult rodents. Small-molecule agonists of the hedgehog (Hh) pathway were used in an attempt to reproduce these findings through intravenous administration. METHODS: The expression of Gli1 was measured in rat spinal cord after the intravenous administration of an Hh agonist. Ten adult rats received a moderate contusion and were treated with either an Hh agonist (10 mg/kg, intravenously) or vehicle (5 rodents per group) 1 hour and 4 days after injury. The rats were killed 5 days postinjury. Tissue samples were immediately placed in fixative. Samples were immunohistochemically stained for neural precursor cells, and these cells were counted. RESULTS: Systemic dosing with an Hh agonist significantly upregulated Gli1 expression in the spinal cord (p < 0.005). After spinal contusion, animals treated with the Hh agonist had significantly more nestin-positive neural precursor cells around the rim of the lesion cavity than in vehicle-treated controls (means +/- SDs, 46.9 +/- 12.9 vs 20.9 +/- 8.3 cells/hpf, respectively, p < 0.005). There was no significant difference in the area of white matter injury between the groups. CONCLUSIONS: An intravenous Hh agonist at doses that upregulate spinal cord Gli1 transcription also increases the population of neural precursor cells after spinal cord injury in adult rats. These data support previous findings based on injections of Shh protein directly into the spinal cord.


Subject(s)
Contusions/pathology , Contusions/therapy , Hedgehog Proteins/agonists , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy , Stem Cells/drug effects , Animals , Cell Proliferation/drug effects , Contusions/metabolism , Hedgehog Proteins/administration & dosage , Injections, Intraperitoneal , Injections, Intravenous , Intermediate Filament Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Nestin , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/metabolism , Stem Cells/physiology , Thoracic Vertebrae , Zinc Finger Protein GLI1
10.
J Neurochem ; 108(6): 1539-49, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19183261

ABSTRACT

The molecular determinants of Sonic Hedgehog (Shh) signaling in mammalian cells and, in particular, those of the CNS are unclear. Here we report that primary cortical astrocyte cultures are highly responsive to both Shh protein and Hh Agonist 1.6, a selective, small molecule Smoothened agonist. Both agonists produced increases in mRNA expression of Shh-regulated gene targets, Gli-1 and Patched in a cyclopamine- and forskolin-sensitive manner. Using this model we show for the first time that Shh pathway activation mediates rapid increases in p38 MAPK phosphorylation, without altering phosphorylation of either extracellular-signal-regulated kinases or c-jun N-terminal kinases. Selective inhibition of p38 MAPK significantly attenuated Shh-dependent up-regulation of Gli-1, inter-alpha trypsin inhibitor and thrombomodulin mRNA, however did not affect expression of insulin-like growth factor 2 or a novel Shh target, membrane-associated guanylate kinase p55 subfamily member 6. Using RNAi and a constitutively-active mutant we show that Shh signaling to p38 MAPK and subsequent Gli-1 transcription requires G-protein receptor kinase 2. Taken together, these findings provide evidence for a central role of G-protein receptor kinase 2-dependent p38 MAPK activity in regulating Shh-mediated gene transcription in astrocytes.


Subject(s)
Astrocytes/metabolism , G-Protein-Coupled Receptor Kinase 2/metabolism , Hedgehog Proteins/metabolism , Signal Transduction/physiology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Animals, Newborn , Astrocytes/drug effects , Cells, Cultured , Cerebral Cortex/cytology , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Rats , Signal Transduction/drug effects , Time Factors , Transfection/methods
11.
Annu Rev Neurosci ; 29: 539-63, 2006.
Article in English | MEDLINE | ID: mdl-16776596

ABSTRACT

The hedgehog pathway is a major regulator of embryonic development, and mutations that decrease its activity are known to be associated with severe defects in nervous system development. Recent evidence suggests hedgehog continues to function in adult tissue, normal as well as diseased, by regulating both cell proliferation and the production of growth and angiogenic factors. In the adult nervous system, this dual ability is especially important in regulating the behavior of neural stem and progenitor cells. This review summarizes information connecting hedgehog signaling and neural diseases, including neurodegenerative disorders and brain tumors, particularly medulloblastoma. We also describe the discovery and utility of small molecule agonists and antagonists of this pathway and their potential as novel types of therapeutics.


Subject(s)
Nervous System Diseases/metabolism , Signal Transduction/physiology , Trans-Activators/metabolism , Animals , Cell Cycle/drug effects , Cell Cycle/physiology , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/metabolism , Enzyme Inhibitors/therapeutic use , Hedgehog Proteins , Humans , Medulloblastoma/drug therapy , Medulloblastoma/metabolism , Nervous System Diseases/classification , Nervous System Diseases/drug therapy , Signal Transduction/drug effects , Stem Cells/drug effects , Stem Cells/physiology , Trans-Activators/agonists , Trans-Activators/antagonists & inhibitors
12.
J Comp Neurol ; 473(2): 270-91, 2004 May 24.
Article in English | MEDLINE | ID: mdl-15101093

ABSTRACT

Although the distribution of estrogen receptor beta (ERbeta) immunoreactivity in the rat central nervous has been reported, no such data are available in the mouse. The present study used in vivo autoradiography utilizing a (125)I-estrogen that has equal binding affinity for both receptors as well as immunohistochemistry for ERbeta and ERalpha, to investigate and compare the distribution of the two ERs in the mouse CNS. The use specific antisera against ERalpha and ERbeta allowed us to evaluate the contribution of these receptors to the binding detected with autoradiography. In addition, data were collected in ovariectomized wildtype and ERalpha KO (knockout) mice to examine developmental regulation of ERbeta expression by ERalpha. These studies revealed that in the mouse CNS, combining immunoreactivity for ERalpha with that for ERbeta accounted for all regions where binding was seen using autoradiography. Therefore, these data strongly suggest that the major contributors of estrogen binding in the mouse CNS are ERalpha and ERbeta. Together, these data provide an anatomical foundation for future studies and advance our understanding of estrogen action in the CNS. Moreover, since the immunocytochemical images were similar in wildtype and ERalpha KO mice, these studies suggest that the lack of ERalpha does not influence the expression of ERbeta in the central nervous system.


Subject(s)
Central Nervous System/chemistry , Receptors, Estrogen/analysis , Animals , Autoradiography , Central Nervous System/metabolism , Estrogen Receptor alpha , Estrogen Receptor beta , Female , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Ovariectomy , Receptors, Estrogen/biosynthesis , Receptors, Estrogen/deficiency
13.
Endocrinology ; 145(2): 736-42, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14592957

ABSTRACT

Neurokinin B (NKB) gene expression is elevated in the infundibular (arcuate) nucleus of the hypothalamus in postmenopausal women. Estrogen replacement decreases both the number of NKB mRNA-expressing neurons and the level of expression within individual cells. Similarly, NKB gene expression is elevated in ovariectomized rats and reduced after estrogen treatment. The actions of estrogen in the brain can be mediated via either estrogen receptor alpha (ERalpha) or estrogen receptor beta (ERbeta). In the rodent arcuate nucleus (ARC), more ERalpha- than ERbeta-containing cells are present, suggesting that ERalpha might be directly responsible for estrogen regulation of NKB gene expression. However, an indirect effect via ERbeta could not be ruled out. Here we used ERalpha knockout and ERbeta knockout mice to identify the type of ER responsible for mediating estrogen action on NKB gene expression in the ARC. Using in situ hybridization histochemistry, we have found that estrogen treatment significantly reduced NKB gene expression in the ARC of ovariectomized ERbeta knockout mice, but had no effect on NKB mRNA levels in ERalpha knockout mice. These data indicate that ERalpha mediates the increase in NKB gene expression associated with ovariectomy in rodents and might also be responsible for the increase in NKB in postmenopausal women.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Estradiol/pharmacology , Gene Expression Regulation/drug effects , Neurokinin B/genetics , Receptors, Estrogen/physiology , Animals , Arcuate Nucleus of Hypothalamus/chemistry , Arcuate Nucleus of Hypothalamus/cytology , Estrogen Receptor alpha , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/chemistry , Ovariectomy , RNA, Messenger/analysis , Receptors, Estrogen/analysis , Receptors, Estrogen/deficiency
14.
Neuron ; 39(6): 937-50, 2003 Sep 11.
Article in English | MEDLINE | ID: mdl-12971894

ABSTRACT

To directly test the requirement for hedgehog signaling in the telencephalon from early neurogenesis, we examined conditional null alleles of both the Sonic hedgehog and Smoothened genes. While the removal of Shh signaling in these animals resulted in only minor patterning abnormalities, the number of neural progenitors in both the postnatal subventricular zone and hippocampus was dramatically reduced. In the subventricular zone, this was partially attributable to a marked increase in programmed cell death. Consistent with Hedgehog signaling being required for the maintenance of stem cell niches in the adult brain, progenitors from the subventricular zone of floxed Smo animals formed significantly fewer neurospheres. The loss of hedgehog signaling also resulted in abnormalities in the dentate gyrus and olfactory bulb. Furthermore, stimulation of the hedgehog pathway in the mature brain resulted in elevated proliferation in telencephalic progenitors. These results suggest that hedgehog signaling is required to maintain progenitor cells in the postnatal telencephalon.


Subject(s)
Stem Cells/metabolism , Telencephalon/metabolism , Trans-Activators/deficiency , Trans-Activators/physiology , Animals , Cell Death/genetics , Cell Death/physiology , Cells, Cultured , Female , Gene Expression Regulation, Developmental/physiology , Hedgehog Proteins , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Stem Cells/cytology , Stem Cells/physiology , Telencephalon/cytology , Telencephalon/embryology , Telencephalon/physiology , Trans-Activators/biosynthesis , Trans-Activators/genetics
15.
Brain Res Dev Brain Res ; 140(2): 157-67, 2003 Feb 16.
Article in English | MEDLINE | ID: mdl-12586422

ABSTRACT

Kallmann syndrome is hypogonadotropic hypogonadism coupled with anosmia. A morphological study found that the endocrine disorder in X-linked Kallmann syndrome is due to failed migration of gonadotropin releasing-hormone (GnRH) neurons from the olfactory placode to the brain during development. Anosmia results from agenesis of the olfactory bulbs and tracts. The gene responsible for the X-linked form of Kallmann syndrome, KAL-1, has been characterized. The orthologues of KAL-1 have been isolated in the chick and the zebrafish, but still await identification in rodents. In the present study, we used polyclonal and monoclonal antibodies to the human KAL-1 encoded protein, anosmin-1, in a primitive mammal, the Asian musk shrew. Musk shrews are insectivores and are therefore evolutionarily closer to primates than rodents. By immunoblot analysis of musk shrew tissues, a band of the expected apparent molecular mass (95 kDa) was detected in several structures of the central nervous system, but not in liver or muscle, which is consistent with the gene expression pattern previously reported in the chick. By immunohistochemical analysis, anosmin-1 was detected in the developing olfactory epithelium, the olfactory, vomeronasal and terminalis nerves, the olfactory bulbs, the cerebellum and the cerebral cortex and in several other regions of the brain, during musk shrew embryogenesis. Furthermore, migrating gonadotropin releasing-hormone (GnRH)-immunoreactive neurons were seen in close association with anosmin-1-immunoreactive fibers. Assuming that the protein is present at the surface of these fibers, we suggest a possible direct role of anosmin-1 in the migration of GnRH neurons in this species.


Subject(s)
Extracellular Matrix Proteins , Nerve Tissue Proteins/metabolism , Shrews/embryology , Animals , Brain/embryology , Embryo, Mammalian/metabolism , Embryonic and Fetal Development , Female , Immunoblotting , Immunohistochemistry , Male , Olfactory Bulb/embryology , Olfactory Mucosa/embryology , Olfactory Pathways/embryology
16.
Ann N Y Acad Sci ; 1007: 89-100, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14993043

ABSTRACT

Estrogen has been demonstrated to protect against brain injury, neurodegeneration, and cognitive decline. Furthermore, estrogen seems to specifically protect cortical and hippocampal neurons from ischemic injury. Here our data evaluating the neuroprotective effects of estrogens, the selective estrogen receptor modulators (SERMs), and estrogen receptor alpha- and beta-selective ligands in animal models of ischemic injury are discussed. In rats and mice, the middle cerebral artery occlusion (MCAO) model was used as models representing cerebrovascular stroke, while in gerbils the two-vessel occlusion model, resenting acute heart attack, was used. Using focal ischemia in ovariectomized ERalphaKO, ERbetaKO, and wild-type mice, we clearly established that the ERalpha subtype is the critical ER-mediating neuroprotection in mouse focal ischemia. Because of the characteristic blood supply of the gerbil, the gerbil global ischemia model was used to evaluate the neuroprotective effects of estrogen, SERMs, and ERalpha- and ERbeta-selective compounds in the hippocampus. Analysis of neurogranin mRNA, a marker of viability of hippocampal neurons, with in situ hybridization, revealed that estrogen treatment resulted in a complete protection in the CA1 regions not only when administered before, but also when given 1 hour after occlusion. Our in vivo binding studies with (125)I-estrogen in gerbils revealed the presence of nuclear estrogen binding sites primarily in CA1 neurons, but not in the CA3 region, as we saw in rats and mice. Together, these observations demonstrate that estrogen protects from ischemic injury in both the focal and global ischemia models by acting primarily via classical nuclear receptors.


Subject(s)
Brain Ischemia/prevention & control , Disease Models, Animal , Estrogens/therapeutic use , Neuroprotective Agents/therapeutic use , Animals , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Dose-Response Relationship, Drug , Estrogens/metabolism , Humans , Neuroprotective Agents/metabolism
17.
Prog Brain Res ; 139: 15-29, 2002.
Article in English | MEDLINE | ID: mdl-12436923

ABSTRACT

Oxytocin is an important modulator of female reproductive functions including parturition, lactation and maternal behavior, while vasopressin regulates water balance and acts as a neurotransmitter. For decades, it has been suggested that estrogen regulates the production and/or release of oxytocin and vasopressin in the rodent brain. Although several studies demonstrated that estrogen can modulate vasopressin mRNA levels in regions known to contain estrogen receptor (ER), such as the bed nucleus of the stria terminalis and medial amygdala, data from the paraventricular and supraoptic nuclei were inconclusive. Since early immunohistochemical and in situ hybridization studies revealed few, if any, ER containing cells in these hypothalamic nuclei, it was thought that oxytocin and vasopressin were not directly regulated by estrogen. The discovery of a second ER (ER-beta) in the late 1990s suggested that estrogen could act in many brain regions heretofore not considered targets for estrogen action. Initial in situ hybridization studies revealed a wide distribution of ER-beta mRNA in the rat brain including neurons of the supraoptic nucleus and the parvocellular and magnocellular divisions of the paraventricular nucleus. Subsequent double-label in situ hybridization/immunocytochemistry studies showed that ER-beta mRNA was present in oxytocin and vasopressin neurons, with the degree of colocalization being both neuropeptide and region specific. In an attempt to demonstrate that ER-beta mRNA was translated into a biologically active protein, a series of in vivo binding studies were conducted in rats with 125I-estrogen. These data revealed the presence of nuclear estrogen binding sites in neurons of the magnocellular system indicating that ER-beta mRNA was translated into protein. Concurrent studies in mice found that the distribution of ER-beta mRNA and 125I-estrogen binding was similar to rats, although there were some notable differences. For example, ER-beta mRNA and binding were not detected in the mouse supraoptic nucleus and although ER-beta was the principle ER in the paraventricular nucleus, ER-alpha was also present. The prevalence of ERs in the mouse paraventricular nucleus was further investigated using ER-alpha and ER-beta knockout mice for in vivo binding studies with 125I-estrogen. The results of these studies showed that ER-beta was the predominant ER in the paraventricular nucleus and confirmed the presence of ER-beta in other brain regions. Moreover, our group recently generated and characterized several polyclonal antisera raised against the C-terminus of ER-beta. Through the use of these antisera, we have confirmed the presence of ER-beta in the rat paraventricular and supraoptic nuclei and shown that ER-beta is colocalized, in part, with oxytocin and vasopressin. To assess the ability of estrogen to modulate the expression of oxytocin mRNA, ovariectomized rats were treated with vehicle or estradiol and the brains processed for in situ hybridization. The results of these studies revealed that estradiol down-regulated oxytocin mRNA in the rat paraventricular nucleus within 6 h of treatment. Together these data and the observation that some of the oxytocin and vasopressin neurons contain ER-beta suggest that estrogen, acting through ER-beta, may directly regulate oxytocin gene expression. However, since the paraventricular nucleus has many subdivisions with different projections and the degree of colocalization of ER-beta with oxytocin/vasopressin varies among subdivisions, the effects of estrogen treatment on gene expression requires further study to ascertain the role of estrogen action in this neuronal systems.


Subject(s)
Gene Expression Regulation/physiology , Oxytocin/genetics , Receptors, Estrogen/physiology , Supraoptic Nucleus/physiology , Animals , Estrogen Receptor beta , Mice , RNA, Messenger/genetics , Rats , Vasopressins/genetics
18.
Endocrinology ; 143(5): 1643-50, 2002 May.
Article in English | MEDLINE | ID: mdl-11956145

ABSTRACT

Early studies found estrogen-binding sites in the ER knockout (ERalphaKO) mouse brain, suggesting a splice variant of ERalpha or another ER. The discovery of ERbeta suggested that binding was due to ERbeta, although questions about an ERgamma remained. To test this hypothesis, ERbetaKO mice were generated and crossed with ERalphaKO mice, and ERalpha/betaKO animals were used for in vivo binding studies with [(125)I]estrogen. The results revealed nuclear binding sites in the ERalpha/betaKO hypothalamus and amygdala. As the binding resembled the distribution of ERalpha, we evaluated the presence of ERalpha splicing variants. A nonphysiological splice variant of ERalpha was identified in ERalpha/betaKO brain and uterus, but was absent in wild-type mice. ERalpha immunoreactivity was also detected in regions of ERalpha/betaKO brain where residual binding was seen. To ascertain the functionality of the variant, the regulation of PR was assessed in brain. The results revealed that E2 significantly increased PR expression, an indication that the variant can regulate gene transcription. These data demonstrate the presence and functionality of an ERalpha variant in ERalpha/betaKO brain and suggest that the residual binding and regulation of PR in ERalpha/betaKO brain can be accounted for by the variant.


Subject(s)
Brain Chemistry/genetics , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Amino Acid Sequence , Animals , Autoradiography , Base Sequence , Binding Sites , Estrogen Receptor alpha , Estrogen Receptor beta , Female , Hypothalamus/drug effects , Hypothalamus/metabolism , Immunohistochemistry , In Situ Hybridization , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...