Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Mol Ther ; 32(3): 800-817, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38243601

ABSTRACT

Hearing loss is a major health concern affecting millions of people worldwide with currently limited treatment options. In clarin-2-deficient Clrn2-/- mice, used here as a model of progressive hearing loss, we report synaptic auditory abnormalities in addition to the previously demonstrated defects of hair bundle structure and mechanoelectrical transduction. We sought an in-depth evaluation of viral-mediated gene delivery as a therapy for these hearing-impaired mice. Supplementation with either the murine Clrn2 or human CLRN2 genes preserved normal hearing in treated Clrn2-/- mice. Conversely, mutated forms of CLRN2, identified in patients with post-lingual moderate to severe hearing loss, failed to prevent hearing loss. The ectopic expression of clarin-2 successfully prevented the loss of stereocilia, maintained normal mechanoelectrical transduction, preserved inner hair cell synaptic function, and ensured near-normal hearing thresholds over time. Maximal hearing preservation was observed when Clrn2 was delivered prior to the loss of transducing stereocilia. Our findings demonstrate that gene therapy is effective for the treatment of post-lingual hearing impairment and age-related deafness associated with CLRN2 patient mutations.


Subject(s)
Hair Cells, Auditory , Hearing Loss , Humans , Animals , Mice , Hair Cells, Auditory/metabolism , Hearing , Hearing Loss/genetics , Hearing Loss/therapy , Stereocilia/metabolism , Dietary Supplements
2.
Hum Genet ; 141(3-4): 709-735, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35353227

ABSTRACT

Usher syndrome (USH) is the most common cause of deaf-blindness in humans, with a prevalence of about 1/10,000 (~ 400,000 people worldwide). Cochlear implants are currently used to reduce the burden of hearing loss in severe-to-profoundly deaf patients, but many promising treatments including gene, cell, and drug therapies to restore the native function of the inner ear and retinal sensory cells are under investigation. The traditional clinical classification of Usher syndrome defines three major subtypes-USH1, 2 and 3-according to hearing loss severity and onset, the presence or absence of vestibular dysfunction, and age at onset of retinitis pigmentosa. Pathogenic variants of nine USH genes have been initially reported: MYO7A, USH1C, PCDH15, CDH23, and USH1G for USH1, USH2A, ADGRV1, and WHRN for USH2, and CLRN1 for USH3. Based on the co-occurrence of hearing and vision deficits, the list of USH genes has been extended to few other genes, but with limited supporting information. A consensus on combined criteria for Usher syndrome is crucial for the development of accurate diagnosis and to improve patient management. In recent years, a wealth of information has been obtained concerning the properties of the Usher proteins, related molecular networks, potential genotype-phenotype correlations, and the pathogenic mechanisms underlying the impairment or loss of hearing, balance and vision. The advent of precision medicine calls for a clear and more precise diagnosis of Usher syndrome, exploiting all the existing data to develop a combined clinical/genetic/network/functional classification for Usher syndrome.


Subject(s)
Usher Syndromes , Genetic Association Studies , Humans , Mutation , Usher Syndromes/genetics
3.
Proc Natl Acad Sci U S A ; 117(49): 31278-31289, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33229591

ABSTRACT

Presbycusis, or age-related hearing loss (ARHL), is a major public health issue. About half the phenotypic variance has been attributed to genetic factors. Here, we assessed the contribution to presbycusis of ultrarare pathogenic variants, considered indicative of Mendelian forms. We focused on severe presbycusis without environmental or comorbidity risk factors and studied multiplex family age-related hearing loss (mARHL) and simplex/sporadic age-related hearing loss (sARHL) cases and controls with normal hearing by whole-exome sequencing. Ultrarare variants (allele frequency [AF] < 0.0001) of 35 genes responsible for autosomal dominant early-onset forms of deafness, predicted to be pathogenic, were detected in 25.7% of mARHL and 22.7% of sARHL cases vs. 7.5% of controls (P = 0.001); half were previously unknown (AF < 0.000002). MYO6, MYO7A, PTPRQ, and TECTA variants were present in 8.9% of ARHL cases but less than 1% of controls. Evidence for a causal role of variants in presbycusis was provided by pathogenicity prediction programs, documented haploinsufficiency, three-dimensional structure/function analyses, cell biology experiments, and reported early effects. We also established Tmc1N321I/+ mice, carrying the TMC1:p.(Asn327Ile) variant detected in an mARHL case, as a mouse model for a monogenic form of presbycusis. Deafness gene variants can thus result in a continuum of auditory phenotypes. Our findings demonstrate that the genetics of presbycusis is shaped by not only well-studied polygenic risk factors of small effect size revealed by common variants but also, ultrarare variants likely resulting in monogenic forms, thereby paving the way for treatment with emerging inner ear gene therapy.


Subject(s)
Deafness/genetics , Genes, Dominant , Mutation/genetics , Presbycusis/genetics , Age Factors , Age of Onset , Animals , Case-Control Studies , Cohort Studies , Heterozygote , Humans , Membrane Proteins/genetics , Mice , MicroRNAs/genetics , Mitochondria/genetics , Exome Sequencing
4.
J Clin Med ; 9(7)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708116

ABSTRACT

Hearing impairment is the most frequent sensory deficit in humans of all age groups, from children (1/500) to the elderly (more than 50% of the over-75 s). Over 50% of congenital deafness are hereditary in nature. The other major causes of deafness, which also may have genetic predisposition, are aging, acoustic trauma, ototoxic drugs such as aminoglycosides, and noise exposure. Over the last two decades, the study of inherited deafness forms and related animal models has been instrumental in deciphering the molecular, cellular, and physiological mechanisms of disease. However, there is still no curative treatment for sensorineural deafness. Hearing loss is currently palliated by rehabilitation methods: conventional hearing aids, and for more severe forms, cochlear implants. Efforts are continuing to improve these devices to help users to understand speech in noisy environments and to appreciate music. However, neither approach can mediate a full recovery of hearing sensitivity and/or restoration of the native inner ear sensory epithelia. New therapeutic approaches based on gene transfer and gene editing tools are being developed in animal models. In this review, we focus on the successful restoration of auditory and vestibular functions in certain inner ear conditions, paving the way for future clinical applications.

5.
EMBO Mol Med ; 11(9): e10288, 2019 09.
Article in English | MEDLINE | ID: mdl-31448880

ABSTRACT

Hearing relies on mechanically gated ion channels present in the actin-rich stereocilia bundles at the apical surface of cochlear hair cells. Our knowledge of the mechanisms underlying the formation and maintenance of the sound-receptive structure is limited. Utilizing a large-scale forward genetic screen in mice, genome mapping and gene complementation tests, we identified Clrn2 as a new deafness gene. The Clrn2clarinet/clarinet mice (p.Trp4* mutation) exhibit a progressive, early-onset hearing loss, with no overt retinal deficits. Utilizing data from the UK Biobank study, we could show that CLRN2 is involved in human non-syndromic progressive hearing loss. Our in-depth morphological, molecular and functional investigations establish that while it is not required for initial formation of cochlear sensory hair cell stereocilia bundles, clarin-2 is critical for maintaining normal bundle integrity and functioning. In the differentiating hair bundles, lack of clarin-2 leads to loss of mechano-electrical transduction, followed by selective progressive loss of the transducing stereocilia. Together, our findings demonstrate a key role for clarin-2 in mammalian hearing, providing insights into the interplay between mechano-electrical transduction and stereocilia maintenance.


Subject(s)
Hearing Loss/metabolism , Stereocilia/metabolism , Adult , Aged , Animals , Cohort Studies , Female , Hair Cells, Auditory/metabolism , Hearing , Hearing Loss/genetics , Hearing Loss/physiopathology , Humans , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Middle Aged , Stereocilia/genetics
6.
Proc Natl Acad Sci U S A ; 116(16): 8010-8017, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30936319

ABSTRACT

Noise overexposure causes oxidative stress, leading to auditory hair cell damage. Adaptive peroxisome proliferation involving pejvakin, a peroxisome-associated protein from the gasdermin family, has been shown to protect against this harmful oxidative stress. However, the role of pejvakin in peroxisome dynamics and homeostasis remains unclear. Here we show that sound overstimulation induces an early and rapid selective autophagic degradation of peroxisomes (pexophagy) in auditory hair cells from wild-type, but not pejvakin-deficient (Pjvk-/-), mice. Noise overexposure triggers recruitment of the autophagosome-associated protein MAP1LC3B (LC3B; microtubule-associated protein 1 light chain 3ß) to peroxisomes in wild-type, but not Pjvk-/-, mice. We also show that pejvakin-LC3B binding involves an LC3-interacting region within the predicted chaperone domain of pejvakin. In transfected cells and in vivo transduced auditory hair cells, cysteine mutagenesis experiments demonstrated the requirement for both C328 and C343, the two cysteine residues closest to the C terminus of pejvakin, for reactive oxygen species-induced pejvakin-LC3B interaction and pexophagy. The viral transduction of auditory hair cells from Pjvk-/- mice in vivo with both Pjvk and Lc3b cDNAs completely restored sound-induced pexophagy, fully prevented the development of oxidative stress, and resulted in normal levels of peroxisome proliferation, whereas Pjvk cDNA alone yielded only a partial correction of the defects. Overall, our results demonstrate that pexophagy plays a key role in noise-induced peroxisome proliferation and identify defective pexophagy as a cause of noise-induced hearing loss. They suggest that pejvakin acts as a redox-activated pexophagy receptor/adaptor, thereby identifying a previously unknown function of gasdermin family proteins.


Subject(s)
Hair Cells, Auditory , Hearing Loss, Noise-Induced , Macroautophagy/physiology , Proteins , Animals , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/physiology , Hearing Loss, Noise-Induced/physiopathology , Hearing Loss, Noise-Induced/prevention & control , Mice , Microtubule-Associated Proteins/metabolism , Proteins/chemistry , Proteins/genetics , Proteins/metabolism
7.
J Clin Invest ; 128(8): 3382-3401, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29985171

ABSTRACT

Clarin-1, a tetraspan-like membrane protein defective in Usher syndrome type IIIA (USH3A), is essential for hair bundle morphogenesis in auditory hair cells. We report a new synaptic role for clarin-1 in mouse auditory hair cells elucidated by characterization of Clrn1 total (Clrn1ex4-/-) and postnatal hair cell-specific conditional (Clrn1ex4fl/fl Myo15-Cre+/-) knockout mice. Clrn1ex4-/- mice were profoundly deaf, whereas Clrn1ex4fl/fl Myo15-Cre+/- mice displayed progressive increases in hearing thresholds, with, initially, normal otoacoustic emissions and hair bundle morphology. Inner hair cell (IHC) patch-clamp recordings for the 2 mutant mice revealed defective exocytosis and a disorganization of synaptic F-actin and CaV1.3 Ca2+ channels, indicative of a synaptopathy. Postsynaptic defects were also observed, with an abnormally broad distribution of AMPA receptors associated with a loss of afferent dendrites and defective electrically evoked auditory brainstem responses. Protein-protein interaction assays revealed interactions between clarin-1 and the synaptic CaV1.3 Ca2+ channel complex via the Cavß2 auxiliary subunit and the PDZ domain-containing protein harmonin (defective in Usher syndrome type IC). Cochlear gene therapy in vivo, through adeno-associated virus-mediated Clrn1 transfer into hair cells, prevented the synaptic defects and durably improved hearing in Clrn1ex4fl/fl Myo15-Cre+/- mice. Our results identify clarin-1 as a key organizer of IHC ribbon synapses, and suggest new treatment possibilities for USH3A patients.


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Hair Cells, Auditory/metabolism , Membrane Proteins , Synapses , Usher Syndromes , Animals , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins , Cytoskeletal Proteins , Dependovirus , Disease Models, Animal , Hair Cells, Auditory/pathology , Humans , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Mice , Mice, Knockout , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Synapses/genetics , Synapses/metabolism , Synapses/pathology , Usher Syndromes/genetics , Usher Syndromes/metabolism , Usher Syndromes/pathology , Usher Syndromes/therapy
8.
Am J Hum Genet ; 98(6): 1266-1270, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27259055

ABSTRACT

By genetic linkage analysis in a large consanguineous Iranian family with eleven individuals affected by severe to profound congenital deafness, we were able to define a 2.8 Mb critical interval (at chromosome 1p21.2-1p21.1) for an autosomal-recessive nonsyndromic deafness locus (DFNB). Whole-exome sequencing allowed us to identify a CDC14A biallelic nonsense mutation, c.1126C>T (p.Arg376(∗)), which was present in the eight clinically affected individuals still alive. Subsequent screening of 115 unrelated individuals affected by severe or profound congenital deafness of unknown genetic cause led us to identify another CDC14A biallelic nonsense mutation, c.1015C>T (p.Arg339(∗)), in an individual originating from Mauritania. CDC14A encodes a protein tyrosine phosphatase. Immunofluorescence analysis of the protein distribution in the mouse inner ear showed a strong labeling of the hair cells' kinocilia. By using a morpholino strategy to knockdown cdc14a in zebrafish larvae, we found that the length of the kinocilia was reduced in inner-ear hair cells. Therefore, deafness caused by loss-of-function mutations in CDC14A probably arises from a morphogenetic defect of the auditory sensory cells' hair bundles, whose differentiation critically depends on the proper growth of their kinocilium.


Subject(s)
Cilia/pathology , Hair Cells, Auditory/pathology , Hearing Loss, Sensorineural/etiology , Mutation/genetics , Phosphoric Monoester Hydrolases/genetics , Severity of Illness Index , Adult , Aged , Animals , Cilia/metabolism , Female , Fluorescent Antibody Technique , Hair Cells, Auditory/enzymology , Hearing Loss, Sensorineural/pathology , Humans , Larva/genetics , Larva/growth & development , Male , Mice , Middle Aged , Pedigree , Protein Tyrosine Phosphatases , Young Adult , Zebrafish/genetics , Zebrafish/growth & development
9.
Cell ; 163(4): 894-906, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26544938

ABSTRACT

A deficiency in pejvakin, a protein of unknown function, causes a strikingly heterogeneous form of human deafness. Pejvakin-deficient (Pjvk(-/-)) mice also exhibit variable auditory phenotypes. Correlation between their hearing thresholds and the number of pups per cage suggest a possible harmful effect of pup vocalizations. Direct sound or electrical stimulation show that the cochlear sensory hair cells and auditory pathway neurons of Pjvk(-/-) mice and patients are exceptionally vulnerable to sound. Subcellular analysis revealed that pejvakin is associated with peroxisomes and required for their oxidative-stress-induced proliferation. Pjvk(-/-) cochleas display features of marked oxidative stress and impaired antioxidant defenses, and peroxisomes in Pjvk(-/-) hair cells show structural abnormalities after the onset of hearing. Noise exposure rapidly upregulates Pjvk cochlear transcription in wild-type mice and triggers peroxisome proliferation in hair cells and primary auditory neurons. Our results reveal that the antioxidant activity of peroxisomes protects the auditory system against noise-induced damage.


Subject(s)
Hearing Loss, Noise-Induced/metabolism , Nerve Tissue Proteins/metabolism , Peroxisomes/metabolism , Proteins/metabolism , Animals , Auditory Pathways , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Hearing Loss, Noise-Induced/pathology , Humans , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Neurons/metabolism , Oxidative Stress , Proteins/genetics
10.
Hum Mol Genet ; 21(17): 3835-44, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22678063

ABSTRACT

We report a consanguineous Iranian family affected by congenital profound sensorineural deafness segregating in an autosomal recessive mode. Auditory tests implicated at least a cochlear defect in these patients. We mapped the deafness, autosomal recessive (DFNB) locus involved by linkage analysis to a 4.8 Mb region at chromosome 21q22.3-qter. Exclusion of the DFNB8/10 gene TMPRSS3, located in this chromosomal interval, led us to identify a new deafness locus, DFNB98. Whole exome sequencing allowed us to identify a homozygous frame-shifting mutation (c.1726G>T+c.1728delC) in the gene TSPEAR (thrombospondin-type laminin G domain and EAR repeats). This truncating mutation (p.V576LfsX37) impeded the secretion of the encoded protein by cells transfected with the mutated gene. Alternative splicing of TSPEAR transcripts predict two protein isoforms, 522 and 669 amino acids in length, both of which would be affected by the mutation. These isoforms are composed of a thrombospondin-type laminin G (TSP) domain followed by seven tandemly organized epilepsy-associated repeats (EARs), probably forming a ß-propeller domain. Tspear is expressed in a variety of murine tissues. Only the larger Tspear transcript was found in the cochlea, and the protein was detected by immunofluorescence at the surface of the hair bundles of sensory cells. The mammalian EAR protein family includes six known members. Defects in four of them, i.e. Lgi1, Lgi2, Vlgr1 and, we show here, TSPEAR, cause disorders with auditory features: epilepsy, which can include auditory features in humans; audiogenic seizures in animals; and/or hearing impairments in humans and mice. These observations demonstrate that EAR-containing proteins are essential for the development and function of the auditory system.


Subject(s)
Deafness/genetics , Genetic Loci/genetics , Proteins/chemistry , Proteins/genetics , Repetitive Sequences, Amino Acid/genetics , Adult , Animals , Audiometry , Base Sequence , Chromosome Segregation/genetics , Chromosomes, Human, Pair 21/genetics , Cochlea/metabolism , Female , Frameshift Mutation/genetics , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , Male , Mice , Molecular Sequence Data , Mutant Proteins/metabolism , Pedigree , Protein Structure, Tertiary , Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Young Adult
11.
Genet Test Mol Biomarkers ; 14(3): 307-11, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20373850

ABSTRACT

Founder mutations, particularly 35delG in the GJB2 gene, have to a large extent contributed to the high frequency of autosomal recessive nonsyndromic hearing loss (ARNSHL). Mutations in transmembrane channel-like gene 1 (TMC1) cause ARNSHL. The p.R34X mutation is the most frequent known mutation in the TMC1 gene. To study the origin of this mutation and determine whether it arose in a common ancestor, we analyzed 21 polymorphic markers spanning the TMC1 gene in 11 unrelated individuals from Algeria, Iran, Iraq, Lebanon, Pakistan, Tunisia, and Turkey who carry this mutation. In nine individuals, we observed significant linkage disequilibrium between p.R34X and five polymorphic markers within a 220 kb interval, suggesting that p.R34X arose from a common founder. We estimated the age of this mutation to be between 1075 and 1900 years, perhaps spreading along the third Hadramaout population movements during the seventh century. A second founder effect was observed in Turkish and Lebanese individuals with markers in a 920 kb interval. Screening for the TMC1 p.R34X mutation is indicated in the genetic evaluation of persons with ARNSHL from North African and Southwest Asia.


Subject(s)
Founder Effect , Hearing Loss/genetics , Membrane Proteins/genetics , Mutation , Africa, Northern , Asia, Western , Connexin 26 , Connexins , Gene Frequency , Genes, Recessive , Humans , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length
12.
Nat Genet ; 38(7): 770-8, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16804542

ABSTRACT

Auditory neuropathy is a particular type of hearing impairment in which neural transmission of the auditory signal is impaired, while cochlear outer hair cells remain functional. Here we report on DFNB59, a newly identified gene on chromosome 2q31.1-q31.3 mutated in four families segregating autosomal recessive auditory neuropathy. DFNB59 encodes pejvakin, a 352-residue protein. Pejvakin is a paralog of DFNA5, a protein of unknown function also involved in deafness. By immunohistofluorescence, pejvakin is detected in the cell bodies of neurons of the afferent auditory pathway. Furthermore, Dfnb59 knock-in mice, homozygous for the R183W variant identified in one DFNB59 family, show abnormal auditory brainstem responses indicative of neuronal dysfunction along the auditory pathway. Unlike previously described sensorineural deafness genes, all of which underlie cochlear cell pathologies, DFNB59 is the first human gene implicated in nonsyndromic deafness due to a neuronal defect.


Subject(s)
Auditory Pathways/metabolism , Hearing Loss, Sensorineural/genetics , Mutation, Missense , Nerve Tissue Proteins/genetics , Amino Acid Sequence , Animals , Auditory Pathways/pathology , Base Sequence , Chromosome Mapping , Chromosomes, Human, Pair 2/genetics , DNA/genetics , Ear, Inner/metabolism , Ear, Inner/pathology , Female , Genes, Recessive , Hearing Loss, Sensorineural/metabolism , Hearing Loss, Sensorineural/pathology , Humans , Male , Mice , Mice, Transgenic , Molecular Sequence Data , Nerve Tissue Proteins/metabolism , Pedigree
13.
Eur J Hum Genet ; 11(10): 816-8, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14512974

ABSTRACT

We report on a novel localization for a recessive form of deafness (DFNB), by linkage analysis in an Iranian consanguineous family. Affected individuals suffer from prelingual profound sensorineural hearing loss. Genome-wide analysis led to the characterization of a new locus, DFNB40, which maps to an approximately 9 Mb interval between markers D22S427 and D22S1144 at chromosome 22q11.21-12.1. Maximum lod score of 3.09 was obtained with D22S1174. Since the Bronx waltzer (bv) mouse mutant, characterized by waltzing behavior, deafness, and degeneration of cochlear inner hair cells, has been mapped to the syntenic region on murine chromosome 5, we suggest that DFNB40 and bv may result from orthologous gene defects.


Subject(s)
Chromosomes, Human, Pair 22 , Genes, Recessive , Hearing Loss, Sensorineural/genetics , Adolescent , Adult , Child , Chromosome Mapping , Female , Genetic Markers , Genotype , Humans , Lod Score , Male , Mutation , Pedigree
14.
Nat Genet ; 33(4): 463-5, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12627230

ABSTRACT

We took advantage of overlapping interstitial deletions at chromosome 8p11-p12 in two individuals with contiguous gene syndromes and defined an interval of roughly 540 kb associated with a dominant form of Kallmann syndrome, KAL2. We establish here that loss-of-function mutations in FGFR1 underlie KAL2 whereas a gain-of-function mutation in FGFR1 has been shown to cause a form of craniosynostosis. Moreover, we suggest that the KAL1 gene product, the extracellular matrix protein anosmin-1, is involved in FGF signaling and propose that the gender difference in anosmin-1 dosage (because KAL1 partially escapes X inactivation) explains the higher prevalence of the disease in males.


Subject(s)
Extracellular Matrix Proteins , Kallmann Syndrome/genetics , Mutation , Receptor Protein-Tyrosine Kinases/genetics , Receptors, Fibroblast Growth Factor/genetics , Cell Adhesion Molecules/metabolism , Chromosome Deletion , Chromosomes, Human, Pair 8 , Chromosomes, Human, X , Exons , Extracellular Matrix/metabolism , Family Health , Female , Genes, Dominant , Humans , Introns , Male , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pedigree , Receptor, Fibroblast Growth Factor, Type 1 , Sex Factors , Signal Transduction
15.
Hum Mol Genet ; 12(5): 463-71, 2003 Mar 01.
Article in English | MEDLINE | ID: mdl-12588794

ABSTRACT

Usher syndrome type I (USH1) is the most frequent cause of hereditary deaf-blindness in humans. Seven genetic loci (USH1A-G) have been implicated in this disease to date, and four of the corresponding genes have been identified: USH1B, C, D and F. We carried out fine mapping of USH1G (chromosome 17q24-25), restricting the location of this gene to an interval of 2.6 Mb and then screened genes present within this interval for mutations. The genes screened included the orthologue of the Sans gene, which is defective in the Jackson shaker deaf mutant and maps to the syntenic region in mice. In two consanguineous USH1G-affected families, we detected two different frameshift mutations in the SANS gene. Two brothers from a German family affected with USH1G were found to be compound heterozygotes for a frameshift and a missense mutation. These results demonstrate that SANS underlies USH1G. The SANS protein contains three ankyrin domains and a sterile alpha motif, and its C-terminal tripeptide presents a class I PDZ-binding motif. We showed, by means of co-transfection experiments, that SANS associates with harmonin, a PDZ domain-containing protein responsible for USH1C. In Jackson shaker mice the hair bundles, the mechanoreceptive structures of inner ear sensory cells, are disorganized. Based on the known interaction between USH1B (myosin VIIa), USH1C (harmonin) and USH1D (cadherin 23) proteins and the results obtained in this study, we suggest that a functional network formed by the USH1B, C, D and G proteins is responsible for the correct cohesion of the hair bundle.


Subject(s)
Blindness/genetics , Carrier Proteins/metabolism , Deafness/genetics , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Cell Cycle Proteins , Cytoskeletal Proteins , Female , Humans , Male , Microsatellite Repeats , Molecular Sequence Data , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...