Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 36(6): 2140-2159, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38391349

ABSTRACT

Transcription factors (TFs) are essential for the regulation of gene expression and cell fate determination. Characterizing the transcriptional activity of TF genes in space and time is a critical step toward understanding complex biological systems. The vegetative gametophyte meristems of bryophytes share some characteristics with the shoot apical meristems of flowering plants. However, the identity and expression profiles of TFs associated with gametophyte organization are largely unknown. With only ∼450 putative TF genes, Marchantia (Marchantia polymorpha) is an outstanding model system for plant systems biology. We have generated a near-complete collection of promoter elements derived from Marchantia TF genes. We experimentally tested reporter fusions for all the TF promoters in the collection and systematically analyzed expression patterns in Marchantia gemmae. This allowed us to build a map of expression domains in early vegetative development and identify a set of TF-derived promoters that are active in the stem-cell zone. The cell markers provide additional tools and insight into the dynamic regulation of the gametophytic meristem and its evolution. In addition, we provide an online database of expression patterns for all promoters in the collection. We expect that these promoter elements will be useful for cell-type-specific expression, synthetic biology applications, and functional genomics.


Subject(s)
Gene Expression Regulation, Plant , Marchantia , Promoter Regions, Genetic , Transcription Factors , Marchantia/genetics , Marchantia/growth & development , Meristem/genetics , Meristem/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
2.
ACS Synth Biol ; 9(4): 864-882, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32163700

ABSTRACT

We present the OpenPlant toolkit, a set of interlinked resources and techniques to develop Marchantia as testbed for bioengineering in plants. Marchantia is a liverwort, a simple plant with an open form of development that allows direct visualization of gene expression and dynamics of cellular growth in living tissues. We describe new techniques for simple and efficient axenic propagation and maintenance of Marchantia lines with no requirement for glasshouse facilities. Marchantia plants spontaneously produce clonal propagules within a few weeks of regeneration, and lines can be amplified million-fold in a single generation by induction of the sexual phase of growth, crossing, and harvesting of progeny spores. The plant has a simple morphology and genome with reduced gene redundancy, and the dominant phase of its life cycle is haploid, making genetic analysis easier. We have built robust Loop assembly vector systems for nuclear and chloroplast transformation and genome editing. These have provided the basis for building and testing a modular library of standardized DNA elements with highly desirable properties. We have screened transcriptomic data to identify a range of candidate genes, extracted putative promoter sequences, and tested them in vivo to identify new constitutive promoter elements. The resources have been combined into a toolkit for plant bioengineering that is accessible for laboratories without access to traditional facilities for plant biology research. The toolkit is being made available under the terms of the OpenMTA and will facilitate the establishment of common standards and the use of this simple plant as testbed for synthetic biology.


Subject(s)
Gene Editing/methods , Gene Expression Regulation, Plant/genetics , Marchantia , Software , Synthetic Biology/methods , Chloroplasts/genetics , DNA, Plant/genetics , DNA, Plant/metabolism , Genes, Plant/genetics , Marchantia/genetics , Marchantia/growth & development , Marchantia/physiology , Transcriptome/genetics
3.
New Phytol ; 222(1): 628-640, 2019 04.
Article in English | MEDLINE | ID: mdl-30521109

ABSTRACT

High-efficiency methods for DNA assembly have enabled the routine assembly of synthetic DNAs of increased size and complexity. However, these techniques require customization, elaborate vector sets or serial manipulations for the different stages of assembly. We have developed Loop assembly based on a recursive approach to DNA fabrication. The system makes use of two Type IIS restriction endonucleases and corresponding vector sets for efficient and parallel assembly of large DNA circuits. Standardized level 0 parts can be assembled into circuits containing 1, 4, 16 or more genes by looping between the two vector sets. The vectors also contain modular sites for hybrid assembly using sequence overlap methods. Loop assembly enables efficient and versatile DNA fabrication for plant transformation. We show the construction of plasmids up to 16 genes and 38 kb with high efficiency (> 80%). We have characterized Loop assembly on over 200 different DNA constructs and validated the fidelity of the method by high-throughput Illumina plasmid sequencing. Our method provides a simple generalized solution for DNA construction with standardized parts. The cloning system is provided under an OpenMTA license for unrestricted sharing and open access.


Subject(s)
DNA, Plant/genetics , Genetic Vectors/genetics , Automation , Marchantia/genetics , Plasmids/genetics , Promoter Regions, Genetic/genetics , Reproducibility of Results
4.
Cell ; 171(2): 287-304.e15, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28985561

ABSTRACT

The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.


Subject(s)
Biological Evolution , Embryophyta/genetics , Genome, Plant , Marchantia/genetics , Adaptation, Biological , Embryophyta/physiology , Gene Expression Regulation, Plant , Marchantia/physiology , Molecular Sequence Annotation , Signal Transduction , Transcription, Genetic
5.
Plant Cell Physiol ; 58(1): e5, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28100647

ABSTRACT

Marchantia polymorpha is an extant relative of the earliest terrestrial plants and has attracted a substantial interest as a model organism for evolutionary and developmental studies. Given its relatively simple genome, compact gene families, simple morphology, ease of propagation and transformation, M. polymorpha is becoming a promising platform for plant synthetic biology. Modular genetic parts have been essential for development of synthetic biology approaches, so we sought to design an engineering oriented database for M. polymorpha genetic parts where each gene is a stand-alone functional unit. MarpoDB is a database of M. polymorpha genes and genetic parts, which is tailored to become an integral tool for a synthetic biology workflow. Among its features are precompiled cross-database querying to InterPro, Pfam signatures and non-redundant Viridiplantae BLAST annotations; BLAST querying to M. polymorpha genes; sequence export in GenBank format; recoding of sequences to the common syntax for type IIS assembly and exchange of DNA parts; and a minimalistic, intuitive and interactive user interface for gene models and sequence exploration. Furthermore, we have implemented user input to encourage feedback, collaboration and exchange between the MarpoDB community. MarpoDB source-code is released on GitHub to promote development of computational tools for synthetic biology.


Subject(s)
Computational Biology/methods , Databases, Genetic , Genes, Plant/genetics , Marchantia/genetics , Registries , 3' Untranslated Regions/genetics , 5' Untranslated Regions/genetics , Gene Expression Regulation, Plant , Internet , Microscopy, Confocal , Molecular Sequence Annotation , Open Reading Frames/genetics , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Reproducibility of Results , Transcriptome/genetics
6.
BMC Bioinformatics ; 17: 110, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26927822

ABSTRACT

BACKGROUND: The advent of high throughput RNA-seq at the single-cell level has opened up new opportunities to elucidate the heterogeneity of gene expression. One of the most widespread applications of RNA-seq is to identify genes which are differentially expressed between two experimental conditions. RESULTS: We present a discrete, distributional method for differential gene expression (D(3)E), a novel algorithm specifically designed for single-cell RNA-seq data. We use synthetic data to evaluate D(3)E, demonstrating that it can detect changes in expression, even when the mean level remains unchanged. Since D(3)E is based on an analytically tractable stochastic model, it provides additional biological insights by quantifying biologically meaningful properties, such as the average burst size and frequency. We use D(3)E to investigate experimental data, and with the help of the underlying model, we directly test hypotheses about the driving mechanism behind changes in gene expression. CONCLUSION: Evaluation using synthetic data shows that D(3)E performs better than other methods for identifying differentially expressed genes since it is designed to take full advantage of the information available from single-cell RNA-seq experiments. Moreover, the analytical model underlying D(3)E makes it possible to gain additional biological insights.


Subject(s)
Algorithms , Gene Expression Profiling , High-Throughput Nucleotide Sequencing/methods , RNA/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Humans , Statistical Distributions
7.
ACS Synth Biol ; 4(3): 307-16, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-24847673

ABSTRACT

Synthetic biology applications in biosensing, bioremediation, and biomining envision the use of engineered microbes beyond a contained laboratory. Deployment of such microbes in the environment raises concerns of unchecked cellular proliferation or unwanted spread of synthetic genes. While antibiotic-resistant plasmids are the most utilized vectors for introducing synthetic genes into bacteria, they are also inherently insecure, acting naturally to propagate DNA from one cell to another. To introduce security into bacterial synthetic biology, we here took on the task of completely reformatting plasmids to be dependent on their intended host strain and inherently disadvantageous for others. Using conditional origins of replication, rich-media compatible auxotrophies, and toxin-antitoxin pairs we constructed a mutually dependent host-plasmid platform, called GeneGuard. In this, replication initiators for the R6K or ColE2-P9 origins are provided in trans by a specified host, whose essential thyA or dapA gene is translocated from a genomic to a plasmid location. This reciprocal arrangement is stable for at least 100 generations without antibiotic selection and is compatible for use in LB medium and soil. Toxin genes ζ or Kid are also employed in an auxiliary manner to make the vector disadvantageous for strains not expressing their antitoxins. These devices, in isolation and in concert, severely reduce unintentional plasmid propagation in E. coli and B. subtilis and do not disrupt the intended E. coli host's growth dynamics. Our GeneGuard system comprises several versions of modular cargo-ready vectors, along with their requisite genomic integration cassettes, and is demonstrated here as an efficient vector for heavy-metal biosensors.


Subject(s)
Biotechnology/standards , Genetic Vectors/genetics , Molecular Biology/standards , Plasmids/genetics , Safety , Synthetic Biology/standards , Biotechnology/methods , Escherichia coli , Models, Genetic , Molecular Biology/methods , Synthetic Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...