Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 7: 430, 2013.
Article in English | MEDLINE | ID: mdl-23964221

ABSTRACT

Abnormalities in frontostriatal circuitry potentially underlie the two core deficits in Autism Spectrum Disorder (ASD); social interaction and communication difficulties and restricted interests and repetitive behaviors. Whilst a few studies have examined connectivity within this circuitry in ASD, no previous study has examined both functional and structural connectivity within the same population. The present study provides the first exploration of both functional and structural frontostriatal connectivity in ASD. Twenty-eight right-handed Caucasian male ASD (17.28 ± 3.57 years) and 27 right-handed male, age and IQ matched controls (17.15 ± 3.64 years) took part in the study. Resting state functional connectivity was carried out on 21 ASD and control participants, and tractography was carried out on 22 ASD and 24 control participants, after excluding subjects for excessive motion and poor data quality. Functional connectivity analysis was carried out between the frontal cortex and striatum after which tractography was performed between regions that showed significant group differences in functional connectivity. The ASD group showed increased functional connectivity between regions in the frontal cortex [anterior cingulate cortex (ACC), middle frontal gyrus (MFG), paracingulate gyrus (Pcg) and orbitofrontal cortex (OFC)], and striatum [nucleus accumbens (NAcc) and caudate]. Increased functional connectivity between ACC and caudate was associated with deactivation to social rewards in the caudate, as previously reported in the same participants. Greater connectivity between the right MFG and caudate was associated with higher restricted interests and repetitive behaviors and connectivity between the bilateral Pcg and NAcc, and the right OFC and NAcc, was negatively associated with social and communicative deficits. Although tracts were reliably constructed for each subject, there were no group differences in structural connectivity. Results are in keeping with previously reported increased corticostriatal functional connectivity in ASD.

2.
Mol Autism ; 3(1): 7, 2012 Sep 26.
Article in English | MEDLINE | ID: mdl-23014171

ABSTRACT

BACKGROUND: Social motivation theory suggests that deficits in social reward processing underlie social impairments in autism spectrum disorders (ASD). However, the extent to which abnormalities in reward processing generalize to other classes of stimuli remains unresolved. The aim of the current study was to examine if reward processing abnormalities in ASD are specific to social stimuli or can be generalized to other classes of reward. Additionally, we sought to examine the results in the light of behavioral impairments in ASD. METHODS: Participants performed adapted versions of the social and monetary incentive delay tasks. Data from 21 unmedicated right-handed male participants with ASD and 21 age- and IQ-matched controls were analyzed using a factorial design to examine the blood-oxygen-level-dependent (BOLD) response during the anticipation and receipt of both reward types. RESULTS: Behaviorally, the ASD group showed less of a reduction in reaction time (RT) for rewarded compared to unrewarded trials than the control group. In terms of the fMRI results, there were no significant group differences in reward circuitry during reward anticipation. During the receipt of rewards, there was a significant interaction between group and reward type in the left dorsal striatum (DS). The ASD group showed reduced activity in the DS compared to controls for social rewards but not monetary rewards and decreased activation for social rewards compared to monetary rewards. Controls showed no significant difference between the two reward types. Increased activation in the DS during social reward processing was associated with faster response times for rewarded trials, compared to unrewarded trials, in both groups. This is in line with behavioral results indicating that the ASD group showed less of a reduction in RT for rewarded compared to unrewarded trials. Additionally, de-activation to social rewards was associated with increased repetitive behavior in ASD. CONCLUSIONS: In line with social motivation theory, the ASD group showed reduced activation, compared to controls, during the receipt of social rewards in the DS. Groups did not differ significantly during the processing of monetary rewards. BOLD activation in the DS, during social reward processing, was associated with behavioral impairments in ASD.

3.
PLoS One ; 6(9): e24126, 2011.
Article in English | MEDLINE | ID: mdl-21931653

ABSTRACT

Rising life expectancies coupled with an increasing awareness of age-related cognitive decline have led to the unwarranted use of psychopharmaceuticals, including acetylcholinesterase inhibitors (AChEIs), by significant numbers of healthy older individuals. This trend has developed despite very limited data regarding the effectiveness of such drugs on non-clinical groups and recent work indicates that AChEIs can have negative cognitive effects in healthy populations. For the first time, we use a combination of EEG and simultaneous EEG/fMRI to examine the effects of a commonly prescribed AChEI (donepezil) on cognition in healthy older participants. The short- and long-term impact of donepezil was assessed using two double-blind, placebo-controlled trials. In both cases, we utilised cognitive (paired associates learning (CPAL)) and electrophysiological measures (resting EEG power) that have demonstrated high-sensitivity to age-related cognitive decline. Experiment 1 tested the effects of 5 mg/per day dosage on cognitive and EEG markers at 6-hour, 2-week and 4-week follow-ups. In experiment 2, the same markers were further scrutinised using simultaneous EEG/fMRI after a single 5 mg dose. Experiment 1 found significant negative effects of donepezil on CPAL and resting Alpha and Beta band power. Experiment 2 replicated these results and found additional drug-related increases in the Delta band. EEG/fMRI analyses revealed that these oscillatory differences were associated with activity differences in the left hippocampus (Delta), right frontal-parietal network (Alpha), and default-mode network (Beta). We demonstrate the utility of simple cognitive and EEG measures in evaluating drug responses after acute and chronic donepezil administration. The presentation of previously established markers of age-related cognitive decline indicates that AChEIs can impair cognitive function in healthy older individuals. To our knowledge this is the first study to identify the precise neuroanatomical origins of EEG drug markers using simultaneous EEG/fMRI. The results of this study may be useful for evaluating novel drugs for cognitive enhancement.


Subject(s)
Cognition/drug effects , Indans/pharmacology , Memory/drug effects , Piperidines/pharmacology , Aged , Analysis of Variance , Cholinesterase Inhibitors/adverse effects , Cholinesterase Inhibitors/pharmacology , Cognition/physiology , Cross-Over Studies , Diarrhea/chemically induced , Donepezil , Double-Blind Method , Electroencephalography/methods , Female , Hippocampus/drug effects , Hippocampus/physiology , Humans , Indans/adverse effects , Magnetic Resonance Imaging/methods , Male , Memory/physiology , Middle Aged , Nausea/chemically induced , Piperidines/adverse effects , Vomiting/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...