Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(18): e2313442121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648483

ABSTRACT

Seasonal migration is a widespread behavior relevant for adaptation and speciation, yet knowledge of its genetic basis is limited. We leveraged advances in tracking and sequencing technologies to bridge this gap in a well-characterized hybrid zone between songbirds that differ in migratory behavior. Migration requires the coordinated action of many traits, including orientation, timing, and wing morphology. We used genetic mapping to show these traits are highly heritable and genetically correlated, explaining how migration has evolved so rapidly in the past and suggesting future responses to climate change may be possible. Many of these traits mapped to the same genomic regions and small structural variants indicating the same, or tightly linked, genes underlie them. Analyses integrating transcriptomic data indicate cholinergic receptors could control multiple traits. Furthermore, analyses integrating genomic differentiation further suggested genes underlying migratory traits help maintain reproductive isolation in this hybrid zone.


Subject(s)
Animal Migration , Seasons , Songbirds , Animals , Animal Migration/physiology , Songbirds/genetics , Songbirds/physiology , Genetic Speciation , Hybridization, Genetic , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism , Genomics/methods , Chromosome Mapping
2.
Ecol Lett ; 27(4): e14420, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38578004

ABSTRACT

Migratory divides, hybrid zones between populations that use different seasonal migration routes, are hypothesised to contribute to speciation. Specifically, relative to parental species, hybrids at divides are predicted to exhibit (1) intermediate migratory behaviour and (2) reduced fitness as a result. We provide the first direct test of the second prediction here with one of the largest existing avian tracking datasets, leveraging a divide between Swainson's thrushes where the first prediction is supported. Using detection rates as a proxy for survival, our results supported the migratory divide hypothesis with lower survival rates for hybrids than parental forms. This finding was juvenile-specific (vs. adults), suggesting selection against hybrids is stronger earlier in life. Reduced hybrid survival was not explained by selection against intermediate phenotypes or negative interactions among phenotypes. Additional work connecting specific features of migration is needed, but these patterns provide strong support for migration as an ecological driver of speciation.


Subject(s)
Songbirds , Animals , Songbirds/genetics , Animal Migration , Phenotype , Seasons
3.
PLoS One ; 19(3): e0300479, 2024.
Article in English | MEDLINE | ID: mdl-38512887

ABSTRACT

Night-migrating songbirds utilize the Earth's magnetic field to help navigate to and from their breeding sites each year. A region of the avian forebrain called Cluster N has been shown to be activated during night migratory behavior and it has been implicated in processing geomagnetic information. Previous studies with night-migratory European songbirds have shown that neuronal activity at Cluster N is higher at night than during the day. Comparable work in North American migrants has only been performed in one species of swallows, so extension of examination for Cluster N in other migratory birds is needed. In addition, it is unclear if Cluster N activation is lateralized and the full extent of its boundaries in the forebrain have yet to be described. We used sensory-driven gene expression based on ZENK and the Swainson's thrush, a night-migratory North American songbird, to fill these knowledge gaps. We found elevated levels of gene expression in night- vs. day-active thrushes and no evidence for lateralization in this region. We further examined the anatomical extent of neural activation in the forebrain using 3D reconstruction topology. Our findings demonstrate that Swainson's thrushes possess an extensive bilateral night-activated Cluster N region in the forebrain similar to other European avian species, suggesting that Cluster N is highly conserved in nocturnal migrants.


Subject(s)
Songbirds , Animals , Songbirds/genetics , Prosencephalon , Neurons , North America , Animal Migration/physiology
4.
Nat Commun ; 15(1): 98, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167733

ABSTRACT

Behavioral variation abounds in nature. This variation is important for adaptation and speciation, but its molecular basis remains elusive. Here, we use a hybrid zone between two subspecies of songbirds that differ in migration - an ecologically important and taxonomically widespread behavior---to gain insight into this topic. We measure gene expression in five brain regions. Differential expression between migratory states was dominated by circadian genes in all brain regions. The remaining patterns were largely brain-region specific. For example, expression differences between the subspecies that interact with migratory state likely help maintain reproductive isolation in this system and were documented in only three brain regions. Contrary to existing work on regulatory mechanisms underlying species-specific traits, two lines of evidence suggest that trans- (vs. cis) regulatory changes underlie these patterns - no evidence for allele-specific expression in hybrids and minimal associations between genomic differentiation and expression differences. Additional work with hybrids shows expression levels were often distinct (transgressive) from parental forms. Behavioral contrasts and functional enrichment analyses allowed us to connect these patterns to mitonuclear incompatibilities and compensatory responses to stress that could exacerbate selection on hybrids and contribute to speciation.


Subject(s)
Songbirds , Animals , Songbirds/genetics , Gene Expression Regulation , Genome , Genomics , Genetic Speciation , Hybridization, Genetic , Reproductive Isolation
5.
Evol Lett ; 7(6): 401-412, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38045725

ABSTRACT

Structural variants (SVs) are a major source of genetic variation; and descriptions in natural populations and connections with phenotypic traits are beginning to accumulate in the literature. We integrated advances in genomic sequencing and animal tracking to begin filling this knowledge gap in the Eurasian blackcap. Specifically, we (a) characterized the genome-wide distribution, frequency, and overall fitness effects of SVs using haplotype-resolved assemblies for 79 birds, and (b) used these SVs to study the genetics of seasonal migration. We detected >15 K SVs. Many SVs overlapped repetitive regions and exhibited evidence of purifying selection suggesting they have overall deleterious effects on fitness. We used estimates of genomic differentiation to identify SVs exhibiting evidence of selection in blackcaps with different migratory strategies. Insertions and deletions dominated the SVs we identified and were associated with genes that are either directly (e.g., regulatory motifs that maintain circadian rhythms) or indirectly (e.g., through immune response) related to migration. We also broke migration down into individual traits (direction, distance, and timing) using existing tracking data and tested if genetic variation at the SVs we identified could account for phenotypic variation at these traits. This was only the case for 1 trait-direction-and 1 specific SV (a deletion on chromosome 27) accounted for much of this variation. Our results highlight the evolutionary importance of SVs in natural populations and provide insight into the genetic basis of seasonal migration.

6.
Article in English | MEDLINE | ID: mdl-38151331

ABSTRACT

Ecologically mediated selection against hybrids, caused by hybrid phenotypes fitting poorly into available niches, is typically viewed as distinct from selection caused by epistatic Dobzhansky-Muller hybrid incompatibilities. Here, we show how selection against transgressive phenotypes in hybrids manifests as incompatibility. After outlining our logic, we summarize current approaches for studying ecology-based selection on hybrids. We then quantitatively review QTL-mapping studies and find traits differing between parent taxa are typically polygenic. Next, we describe how verbal models of selection on hybrids translate to phenotypic and genetic fitness landscapes, highlighting emerging approaches for detecting polygenic incompatibilities. Finally, in a synthesis of published data, we report that trait transgression-and thus possibly extrinsic hybrid incompatibility in hybrids-escalates with the phenotypic divergence between parents. We discuss conceptual implications and conclude that studying the ecological basis of hybrid incompatibility will facilitate new discoveries about mechanisms of speciation.

7.
Sci Rep ; 13(1): 10866, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37407574

ABSTRACT

Hybrid zones can be used to identify traits that maintain reproductive isolation and contribute to speciation. Cognitive traits may serve as post-mating reproductive isolating barriers, reducing the fitness of hybrids if, for example, misexpression occurs in hybrids and disrupts important neurological mechanisms. We tested this hypothesis in a hybrid zone between two subspecies of Swainson's thrushes (Catharus ustulatus) using two cognitive tests-an associative learning spatial test and neophobia test. We included comparisons across the sexes and seasons (spring migration and winter), testing if hybrid females performed worse than males (as per Haldane's rule) and if birds (regardless of ancestry or sex) performed better during migration, when they are building navigational maps and encountering new environments. We documented reduced cognitive abilities in hybrids, but this result was limited to males and winter. Hybrid females did not perform worse than males in either season. Although season was a significant predictor of performance, contrary to our prediction, all birds learned faster during the winter. The hypothesis that cognitive traits could serve as post-mating isolating barriers is relatively new; this is one of the first tests in a natural hybrid zone and non-food-caching species. We also provide one of the first comparisons of cognitive abilities between seasons. Future neurostructural and neurophysiological work should be used to examine mechanisms underlying our behavioral observations.


Subject(s)
Songbirds , Animals , Male , Female , Songbirds/physiology , Seasons , Reproduction , Learning , Reproductive Isolation , Cognition , Hybridization, Genetic
8.
Sci Rep ; 13(1): 2437, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36765096

ABSTRACT

The impact of climate change on spring phenology poses risks to migratory birds, as migration timing is controlled predominantly by endogenous mechanisms. Despite recent advances in our understanding of the underlying genetic basis of migration timing, the ways that migration timing phenotypes in wild individuals may map to specific genomic regions requires further investigation. We examined the genetic architecture of migration timing in a long-distance migratory songbird (purple martin, Progne subis subis) by integrating genomic data with an extensive dataset of direct migratory tracks. A moderate to large amount of variance in spring migration arrival timing was explained by genomics (proportion of phenotypic variation explained by genomics = 0.74; polygenic score R2 = 0.24). On chromosome 1, a region that was differentiated between migration timing phenotypes contained genes that could facilitate nocturnal flights and act as epigenetic modifiers. Overall, these results advance our understanding of the genomic underpinnings of migration timing.


Subject(s)
Songbirds , Swallows , Animals , Songbirds/genetics , Animal Migration , Seasons , Genomics
9.
Curr Biol ; 32(20): R1144-R1149, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36283382

ABSTRACT

Bird migration is one of the most amazing biological phenomena exhibited by organisms today, with birds as small as three grams travelling thousands of kilometers twice each year. Most people are familiar with this behaviour; they likely recognize the seasonal movements of birds each year and may have even witnessed specific migratory events (e.g., geese flying in their characteristic V-formations). What many people may not know is that bird migration has a strong genetic basis, especially in groups like songbirds who migrate alone and at night, preventing juveniles from following more experienced adult birds on their first migration. Successful migration also requires the coordinated function of many traits, not only behavioural traits like timing and orientation but also morphological and physiological traits to permit these long distance treks. Together, these traits comprise what has been called the 'migratory syndrome'. In this primer, we provide a broad overview of research on the genetics of migratory traits, from early experimental work to future functional assays and their importance for bird conservation. We focus primarily on songbirds as most work on the genetics of migration has been conducted with this group.


Subject(s)
Animal Migration , Songbirds , Animals , Animal Migration/physiology , Songbirds/genetics , Phenotype , Seasons
10.
Sci Rep ; 12(1): 7947, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35562382

ABSTRACT

Timing is essential for survival and reproduction of organisms across the tree of life. The core circadian clock gene Clk is involved in the regulation of annual timing events and shows highly conserved sequence homology across vertebrates except for one variable region of poly-glutamine repeats. Clk genotype varies in some species with latitude, seasonal timing and migration. However, findings are inconsistent, difficult to disentangle from environmental responses, and biased towards high latitudes. Here we combine field data with a common-garden experiment to study associations of Clk polymorphism with latitude, migration and annual-cycle timing within the stonechat species complex across its trans-equatorial distribution range. Our dataset includes 950 records from 717 individuals from nine populations with diverse migratory strategies. Gene diversity was lowest in resident African and Canary Island populations and increased with latitude, independently of migration distance. Repeat length and annual-cycle timing was linked in a population-specific way. Specifically, equatorial African stonechats showed delayed timing with longer repeat length for all annual-cycle stages. Our data suggest that at low latitudes with nearly constant photoperiod, Clk genotype might orchestrate a range of consistent, individual chronotypes. In contrast, the influence of Clk on annual-cycle timing at higher latitudes might be mediated by its interactions with genes involved in (circadian) photoperiodic pathways.


Subject(s)
Circadian Clocks , Photoperiod , Animals , Circadian Rhythm , Polymorphism, Genetic , Reproduction
11.
Evolution ; 75(8): 2137-2144, 2021 08.
Article in English | MEDLINE | ID: mdl-32820532

ABSTRACT

Hybridization has important effects on the evolutionary trajectories of natural populations but estimates of this process in the wild and at the individual-level are lacking. Justyn et al. attempted to fill this gap using the citizen science database eBird but there are limitations to this approach. Here, we outline and directly test these limitations using literature searches, case studies, and a comparison between eBird and Birds of North America (BNA), a database that documents hybridization using the scientific literature. We use a hybrid zone between Lazuli and Indigo buntings to highlight the importance of considering geographic range when estimating rates of hybridization and two literature searches to show the importance of considering cryptic hybrids (those that cannot be identified using phenotypic traits) when quantifying these rates. We also use BNA and a case study of hybrid White-faced and Glossy Ibises to show that citizen scientists are underreporting hybrids compared with experts. Justyn et al. highlighted an important gap in the literature, but their results likely represent the lower limit of hybridization between birds and a more nuanced interpretation of their results (e.g., considering extrinsic postzygotic selection) is needed.


Subject(s)
Citizen Science , Passeriformes , Animals , Biological Evolution , Hybridization, Genetic , Nucleic Acid Hybridization
12.
Proc Biol Sci ; 287(1938): 20201339, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33143577

ABSTRACT

Seasonal migration is a complex and variable behaviour with the potential to promote reproductive isolation. In Eurasian blackcaps (Sylvia atricapilla), a migratory divide in central Europe separating populations with southwest (SW) and southeast (SE) autumn routes may facilitate isolation, and individuals using new wintering areas in Britain show divergence from Mediterranean winterers. We tracked 100 blackcaps in the wild to characterize these strategies. Blackcaps to the west and east of the divide used predominantly SW and SE directions, respectively, but close to the contact zone many individuals took intermediate (S) routes. At 14.0° E, we documented a sharp transition from SW to SE migratory directions across only 27 (10-86) km, implying a strong selection gradient across the divide. Blackcaps wintering in Britain took northwesterly migration routes from continental European breeding grounds. They originated from a surprisingly extensive area, spanning 2000 km of the breeding range. British winterers bred in sympatry with SW-bound migrants but arrived 9.8 days earlier on the breeding grounds, suggesting some potential for assortative mating by timing. Overall, our data reveal complex variation in songbird migration and suggest that selection can maintain variation in migration direction across short distances while enabling the spread of a novel strategy across a wide range.


Subject(s)
Animal Migration , Passeriformes , Animals , Biological Evolution , Europe , Reproductive Isolation , Songbirds
13.
Am Nat ; 195(2): 192-200, 2020 02.
Article in English | MEDLINE | ID: mdl-32017617

ABSTRACT

Closely related populations often display similar patterns of genomic differentiation, yet it remains an open question which ecological and evolutionary forces generate these patterns. The leading hypothesis is that this similarity in divergence is driven by parallel natural selection. However, several recent studies have suggested that these patterns may instead be a product of the depletion of genetic variation that occurs as result of background selection (i.e., linked negative selection). To date, there have been few direct tests of these competing hypotheses. To determine the relative contributions of background selection and parallel selection to patterns of repeated differentiation, we examined 24 independently derived populations of freshwater stickleback occupying a variety of niches and estimated genomic patterns of differentiation in each relative to their common marine ancestor. Patterns of genetic differentiation were strongly correlated across pairs of freshwater populations adapting to the same ecological niche, supporting a role for parallel natural selection. In contrast to other recent work, our study comparing populations adapting to the same niche produced no evidence signifying that similar patterns of genomic differentiation are generated by background selection. We also found that overall patterns of genetic differentiation were considerably more similar for populations found in closer geographic proximity. In fact, the effect of geography on the repeatability of differentiation was greater than that of parallel selection. Our results suggest that shared selective landscapes and ancestral variation are the key drivers of repeated patterns of differentiation in systems that have recently colonized novel environments.


Subject(s)
Ecosystem , Selection, Genetic , Smegmamorpha/genetics , Adaptation, Physiological/genetics , Animals , Biological Evolution , Fresh Water , Genetic Variation , Genetics, Population , Geography , Polymorphism, Single Nucleotide , Seawater
14.
Methods Mol Biol ; 2090: 413-433, 2020.
Article in English | MEDLINE | ID: mdl-31975177

ABSTRACT

Birds are one of the most recognizable and diverse groups of organisms on earth. This group has played an important role in many fields, including the development of methods in behavioral ecology and evolutionary theory. The use of population genomics took off following the advent of high-throughput sequencing in various taxa. Several features of avian genomes make them particularly amenable for work in this field, including their nucleated red blood cells permitting easy DNA extraction and small, compact genomes. We review the latest findings in the population genomics of birds here, emphasizing questions related to behavior, ecology, evolution, and conservation. Additionally, we include insights in trait mapping and the ability to obtain accurate estimates of important summary statistics for conservation (e.g., genetic diversity and inbreeding). We highlight roadblocks that will need to be overcome in order to advance work on the population genomics of birds and prospects for future work. Roadblocks include the assembly of more contiguous reference genomes using long-reads and optical mapping. Prospects include the integration of population genomics with additional fields (e.g., landscape genetics, phylogeography, and genomic mapping) along with studies beyond genetic variants (e.g., epigenetics).


Subject(s)
Birds/genetics , Genomics/methods , Animals , Chromosome Mapping , Evolution, Molecular , Genetic Speciation , Genetic Variation , Genetics, Population , High-Throughput Nucleotide Sequencing
15.
Evol Lett ; 2(2): 76-87, 2018 Apr.
Article in English | MEDLINE | ID: mdl-30283666

ABSTRACT

Heterogeneous patterns of genomic differentiation are commonly documented between closely related populations and there is considerable interest in identifying factors that contribute to their formation. These factors could include genomic features (e.g., areas of low recombination) that promote processes like linked selection (positive or purifying selection that affects linked neutral sites) at specific genomic regions. Examinations of repeatable patterns of differentiation across population pairs can provide insight into the role of these factors. Birds are well suited for this work, as genome structure is conserved across this group. Accordingly, we reestimated relative (FST ) and absolute (dXY ) differentiation between eight sister pairs of birds that span a broad taxonomic range using a common pipeline. Across pairs, there were modest but significant correlations in window-based estimates of differentiation (up to 3% of variation explained for FST and 26% for dXY ), supporting a role for processes at conserved genomic features in generating heterogeneous patterns of differentiation; processes specific to each episode of population divergence likely explain the remaining variation. The role genomic features play was reinforced by linear models identifying several genomic variables (e.g., gene densities) as significant predictors of FST and dXY repeatability. FST repeatability was higher among pairs that were further along the speciation continuum (i.e., more reproductively isolated) providing further insight into how genomic differentiation changes with population divergence; early stages of speciation may be dominated by positive selection that is different between pairs but becomes integrated with processes acting according to shared genomic features as speciation proceeds.

16.
Mol Ecol ; 27(23): 4839-4855, 2018 12.
Article in English | MEDLINE | ID: mdl-30187980

ABSTRACT

Detailed evaluations of genomic variation between sister species often reveal distinct chromosomal regions of high relative differentiation (i.e., "islands of differentiation" in FST ), but there is much debate regarding the causes of this pattern. We briefly review the prominent models of genomic islands of differentiation and compare patterns of genomic differentiation in three closely related pairs of New World warblers with the goal of evaluating support for the four models. Each pair (MacGillivray's/mourning warblers; Townsend's/black-throated green warblers; and Audubon's/myrtle warblers) consists of forms that were likely separated in western and eastern North American refugia during cycles of Pleistocene glaciations and have now come into contact in western Canada, where each forms a narrow hybrid zone. We show strong differences between pairs in their patterns of genomic heterogeneity in FST , suggesting differing selective forces and/or differing genomic responses to similar selective forces among the three pairs. Across most of the genome, levels of within-group nucleotide diversity (πWithin ) are almost as large as levels of between-group nucleotide distance (πBetween ) within each pair, suggesting recent common ancestry and/or gene flow. In two pairs, a pattern of the FST peaks having low πBetween suggests that selective sweeps spread between geographically differentiated groups, followed by local differentiation. This "sweep-before-differentiation" model is consistent with signatures of gene flow within the yellow-rumped warbler species complex. These findings add to our growing understanding of speciation as a complex process that can involve phases of adaptive introgression among partially differentiated populations.


Subject(s)
Gene Flow , Genetic Speciation , Genomic Islands , Songbirds/genetics , Animals , Canada , Genetic Variation , Genomics , Models, Genetic , Songbirds/classification
17.
Mol Ecol ; 26(17): 4378-4390, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28667780

ABSTRACT

Adaptation to new environments often occurs in the face of gene flow. Under these conditions, gene flow and recombination can impede adaptation by breaking down linkage disequilibrium between locally adapted alleles. Theory predicts that this decay can be halted or slowed if adaptive alleles are tightly linked in regions of low recombination, potentially favouring divergence and adaptive evolution in these regions over others. Here, we compiled a global genomic data set of over 1,300 individual threespine stickleback from 52 populations and compared the tendency for adaptive alleles to occur in regions of low recombination between populations that diverged with or without gene flow. In support of theory, we found that putatively adaptive alleles (FST and dXY outliers) tend to occur more often in regions of low recombination in populations where divergent selection and gene flow have jointly occurred. This result remained significant when we employed different genomic window sizes, controlled for the effects of mutation rate and gene density, controlled for overall genetic differentiation, varied the genetic map used to estimate recombination and used a continuous (rather than discrete) measure of geographic distance as proxy for gene flow/shared ancestry. We argue that our study provides the first statistical evidence that the interaction of gene flow and selection biases divergence toward regions of low recombination.


Subject(s)
Gene Flow , Genetics, Population , Selection, Genetic , Smegmamorpha/genetics , Alleles , Animals , Recombination, Genetic
18.
Article in English | MEDLINE | ID: mdl-28585043

ABSTRACT

Migratory traits in birds have been shown to have a strong heritable component and several candidate genes have been suggested to control these migratory traits. To investigate if the genetic makeup of one or a set of these candidate genes can be used to identify a general pattern between migratory and non-migratory birds, we extracted genomic sequence data for 25 hypothesised candidate genes for migration from 70 available genomes across all orders of Aves and characterised sequence divergence between migratory and non-migratory phenotypes. When examining each gene separately across all species, we did not identify any genetic variants in candidate genes that distinguished migrants from non-migrants; any resulting pattern was driven by the phylogenetic signal. This was true for each gene analysed independently, but also for concatenated sequence alignments of all candidate genes combined. We also attempted to distinguish between migrant and non-migrants using structural features at four candidate genes that have previously been reported to show associated with migratory behaviour but did not pick up a signal for migratory phenotype here either. Finally, a screen for dN/dS ratio across all focal candidate genes to probe for putative features of selection did not uncover a pattern, though this might not be expected given the broad phylogenetic scale used here. Our study demonstrates the potential of public genomic data to test for general patterns of migratory gene candidates in a cross-species comparative context, and raise questions on the applicability of candidate gene approaches in a macro-evolutionary context to understand the genetic architecture of migratory behaviour.


Subject(s)
Animal Migration , Birds/genetics , Genome/genetics , Animals , Biological Evolution , Phenotype , Phylogeny
19.
PeerJ ; 5: e3201, 2017.
Article in English | MEDLINE | ID: mdl-28439469

ABSTRACT

BACKGROUND: Zones of contact between closely related taxa with divergent migratory routes, termed migratory divides, have been suggested as areas where hybrid offspring may have intermediate and inferior migratory routes, resulting in low fitness of hybrids and thereby promoting speciation. In the Rocky Mountains of Canada there is a narrow hybrid zone between Audubon's and myrtle warblers that is likely maintained by selection against hybrids. Band recoveries and isotopic studies indicate that this hybrid zone broadly corresponds to the location of a possible migratory divide, with Audubon's warblers migrating south-southwest and myrtle warblers migrating southeast. We tested a key prediction of the migratory divide hypothesis: that genetic background would be predictive of migratory orientation among warblers in the center of the hybrid zone. METHODS: We recorded fall migratory orientation of wild-caught migrating warblers in the center of the hybrid zone as measured by video-based monitoring of migratory restlessness in circular orientation chambers. We then tested whether there was a relationship between migratory orientation and genetic background, as measured using a set of species-specific diagnostic genetic markers. RESULTS: We did not detect a significant association between orientation and genetic background. There was large variation among individuals in orientation direction. Mean orientation was towards the NE, surprising for birds on fall migration, but aligned with the mountain valley in which the study took place. CONCLUSIONS: Only one other study has directly analyzed migratory orientation among naturally-produced hybrids in a migratory divide. While the other study showed an association between genetic background and orientation, we did not observe such an association in yellow-rumped warblers. We discuss possible reasons, including the possibility of a lack of a strong migratory divide in this hybrid zone and/or methodological limitations that may have prevented accurate measurements of long-distance migratory orientation.

20.
Curr Biol ; 26(16): 2167-73, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27476599

ABSTRACT

Details on the genetics of behavioral and quantitative phenotypes remain limited to a few organisms. Such information is central to understanding both adaptation and speciation, as many of these phenotypes reduce gene flow between taxa [1-3]. Hybrid zones provide an ideal arena for studying this topic, as they consist of recombinant genotypes that allow genetic mapping of traits distinguishing natural populations [4]. We examined the genetic basis of migratory orientation and plumage color, both of which may contribute to speciation, in a hybrid zone between two groups of Swainson's thrushes that differ in these traits. We identified a cluster of SNPs on chromosome 4 strongly associated with migratory orientation. Genes involved with the circadian clock, nervous system, and cell signaling were located here and included candidates implicated in smaller-scale studies of migration in different animal groups, supporting previous suggestions that there is a common gene package for migration [5]. Plumage color was more polygenic than migratory orientation but showed strong associations on the Z chromosome that included SNPs linked to TYRP1, a gene involved in the production of eumelanin. We integrated these results with genomic data from pure populations and found that regions associated with both phenotypes co-localized with regions of elevated relative differentiation between the groups. This finding relates to the literature on islands of differentiation [6-8] by implicating divergent selection in generating these peaks. Together, our results identify specific genomic regions involved in both the regulation of complex phenotypes across animal groups and speciation [9].


Subject(s)
Animal Migration , Genetic Variation , Pigmentation/genetics , Songbirds/physiology , Animals , British Columbia , Color , Feathers/physiology , Female , Hybridization, Genetic , Male , Phenotype , Songbirds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...