Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Nutr ; 11(4): 1016-1031, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32167128

ABSTRACT

Improving awareness and accessibility of healthy diets are key challenges for health professionals and policymakers alike. While the US government has been assessing and encouraging nutritious diets via the Dietary Guidelines for Americans (DGA) since 1980, the long-term sustainability, and thus availability, of those diets has received less attention. The 2015 Dietary Guidelines Advisory Committee (DGAC) examined the evidence on sustainable diets for the first time, but this topic was not included within the scope of work for the 2020 DGAC. The objective of this study was to systematically review the evidence on US dietary patterns and sustainability outcomes published from 2015 to 2019 replicating the 2015 DGAC methodology. The 22 studies meeting inclusion criteria reveal a rapid expansion of research on US dietary patterns and sustainability, including 8 studies comparing the sustainability of DGA-compliant dietary patterns with current US diets. Our results challenge prior findings that diets adhering to national dietary guidelines are more sustainable than current average diets and indicate that the Healthy US-style dietary pattern recommended by the DGA may lead to similar or increased greenhouse gas emissions, energy use, and water use compared with the current US diet. However, consistent with previous research, studies meeting inclusion criteria generally support the conclusion that, among healthy dietary patterns, those higher in plant-based foods and lower in animal-based foods would be beneficial for environmental sustainability. Additional research is needed to further evaluate ways to improve food system sustainability through both dietary shifts and agricultural practices in the United States.


Subject(s)
Diet , Nutrition Policy , Diet, Healthy , Food , Food Supply , Humans , United States
2.
PLoS One ; 14(9): e0215702, 2019.
Article in English | MEDLINE | ID: mdl-31536506

ABSTRACT

Identifying agricultural practices that enhance water cycling is critical, particularly with increased rainfall variability and greater risks of droughts and floods. Soil infiltration rates offer useful insights to water cycling in farming systems because they affect both yields (through soil water availability) and other ecosystem outcomes (such as pollution and flooding from runoff). For example, conventional agricultural practices that leave soils bare and vulnerable to degradation are believed to limit the capacity of soils to quickly absorb and retain water needed for crop growth. Further, it is widely assumed that farming methods such as no-till and cover crops can improve infiltration rates. Despite interest in the impacts of agricultural practices on infiltration rates, this effect has not been systematically quantified across a range of practices. To evaluate how conventional practices affect infiltration rates relative to select alternative practices (no-till, cover crops, crop rotation, introducing perennials, crop and livestock systems), we performed a meta-analysis that included 89 studies with field trials comparing at least one such alternative practice to conventional management. We found that introducing perennials (grasses, agroforestry, managed forestry) or cover crops led to the largest increases in infiltration rates (mean responses of 59.2 ± 20.9% and 34.8 ± 7.7%, respectively). Also, although the overall effect of no-till was non-significant (5.7 ± 9.7%), the practice led to increases in wetter climates and when combined with residue retention. The effect of crop rotation on infiltration rate was non-significant (18.5 ± 13.2%), and studies evaluating impacts of grazing on croplands indicated that this practice reduced infiltration rates (-21.3 ± 14.9%). Findings suggest that practices promoting ground cover and continuous roots, both of which improve soil structure, were most effective at increasing infiltration rates.


Subject(s)
Agriculture , Soil/chemistry , Agriculture/methods , Animals , Crops, Agricultural , Databases, Factual , Ecosystem , Livestock , Models, Statistical , Publication Bias
3.
Glob Chang Biol ; 24(2): e705-e718, 2018 02.
Article in English | MEDLINE | ID: mdl-28981192

ABSTRACT

Soil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation.


Subject(s)
Carbon Sequestration , Carbon/chemistry , Ecosystem , International Cooperation , Soil/chemistry , Agriculture , Carbon Cycle , Climate , Climate Change , Databases, Factual , Models, Theoretical
4.
Ecol Appl ; 25(2): 531-45, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26263673

ABSTRACT

Compost amendments to grasslands have been proposed as a strategy to mitigate climate change through carbon (C) sequestration, yet little research exists exploring the net mitigation potential or the long-term impacts of this strategy. We used field data and the DAYCENT biogeochemical model to investigate the climate change mitigation potential of compost amendments to grasslands in California, USA. The model was used to test ecosystem C and greenhouse gas responses to a range of compost qualities (carbon to nitrogen [C:N] ratios of 11.1, 20, or 30) and application rates (single addition of 14 Mg C/ha or 10 annual additions of 1.4 Mg C · ha(-1) · yr(-1)). The model was parameterized using site-specific weather, vegetation, and edaphic characteristics and was validated by comparing simulated soil C, nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) fluxes, and net primary production (NPP) with three years of field data. All compost amendment scenarios led to net greenhouse gas sinks that persisted for several decades. Rates of climate change mitigation potential ranged from 130 ± 3 g to 158 ± 8 g CO2-eq · m(-2) ·yr(-1) (where "eq" stands for "equivalents") when assessed over a 10-year time period and 63 ± 2 g to 84 ± 10 g CO2- eq · m(-2) · yr(-1) over a 30-year time period. Both C storage and greenhouse gas emissions increased rapidly following amendments. Compost amendments with lower C:N led to higher C sequestration rates over time. However, these soils also experienced greater N20 fluxes. Multiple smaller compost additions resulted in similar cumulative C sequestration rates, albeit with a time lag, and lower cumulative N2O emissions. These results identify a trade-off between maximizing C sequestration and minimizing N2O emissions following amendments, and suggest that compost additions to grassland soils can have a long-term impact on C and greenhouse gas dynamics that contributes to climate change mitigation.


Subject(s)
Climate Change , Conservation of Natural Resources , Ecosystem , Poaceae , Computer Simulation , Models, Theoretical , Reproducibility of Results , Soil , Time Factors
5.
Proc Natl Acad Sci U S A ; 104(52): 20696-701, 2007 Dec 26.
Article in English | MEDLINE | ID: mdl-18093931

ABSTRACT

The long-term ecological response to recurrent deforestation associated with shifting cultivation remains poorly investigated, especially in the dry tropics. We present a study of phosphorus (P) dynamics in the southern Yucatán, highlighting the possibility of abrupt shifts in biogeochemical cycling resulting from positive feedbacks between vegetation and its limiting resources. After three cultivation-fallow cycles, available soil P declines by 44%, and one-time P inputs from biomass burning decline by 76% from mature forest levels. Interception of dust-borne P ("canopy trapping") declines with lower plant biomass and leaf area, limiting deposition in secondary forest. Potential leaching losses are greater in secondary than in mature forest, but the difference is very small compared with the difference in P inputs. The decline in new P from atmospheric deposition creates a long-term negative ecosystem balance for phosphorus. The reduction in soil P availability will feed back to further limit biomass recovery and may induce a shift to sparser vegetation. Degradation induced by hydrological and biogeochemical feedbacks on P cycling under shifting cultivation will affect farmers in the near future. Without financial support to encourage the use of fertilizer, farmers could increase the fallow period, clear new land, or abandon agriculture for off-farm employment. Their response will determine the regional balance between forest loss and forest regrowth, as well as the frequency of use and rate of recovery at a local scale, further feeding back on ecological processes at multiple scales.


Subject(s)
Ecosystem , Environment , Environmental Monitoring , Phosphorus/chemistry , Trees , Tropical Climate , Agriculture , Biodiversity , Biomass , Carbon , Conservation of Natural Resources , Environmental Pollution , Forestry , Plant Leaves , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...