Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 26(22): 4594-4599, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38781175

ABSTRACT

Ubiquitin (Ub) regulates a wide array of cellular processes through post-translational modification of protein substrates. Ub is conjugated at its C-terminus to target proteins via an enzymatic cascade in which covalently bound Ub thioesters are transferred from E1 activating enzymes to E2 conjugating enzymes, and then to certain E3 protein ligases. These transthioesterification reactions proceed via transient tetrahedral intermediates. A variety of chemical strategies have been used to capture E1-Ub-E2 and E2-Ub-E3 mimics, but these introduce modifications that disrupt atomic spacing at the linkage point relative to the native tetrahedral intermediate. We have developed a biselectrophilic PSAN warhead that can be installed in place of the conserved C-terminal glycine in Ub and used to form ternary protein complexes linked via cyanomethyldithioacetals that closely mimic the native tetrahedral intermediates. Investigation of the reactivity of the warhead and substituted analogues led to an effective semisynthetic route to Ub-1-PSAN, which was used to form a ternary E1-Ub*-E2 complex as a mimic of the transthioesterification intermediate.


Subject(s)
Ubiquitin , Esterification , Ubiquitin/chemistry , Ubiquitin/chemical synthesis , Molecular Structure , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/chemistry
2.
Chem Sci ; 14(38): 10524-10531, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37799988

ABSTRACT

Carboxylic acids are an important structural feature in many drugs, but are associated with a number of unfavorable pharmacological properties. To address this problem, carboxylic acids can be replaced with bioisosteric mimics that interact similarly with biological targets but avoid these liabilities. Recently, 3-oxetanols have been identified as useful carboxylic acid bioisosteres that maintain similar hydrogen-bonding capacity while decreasing acidity and increasing lipophilicity. However, the installation of 3-oxetanols generally requires multistep de novo synthesis, presenting an obstacle to investigation of these promising bioisosteres. Herein, we report a new synthetic approach involving direct conversion of carboxylic acids to 3-oxetanols using a photoredox-catalyzed decarboxylative addition to 3-oxetanone. Two versions of the transformation have been developed, in the presence or absence of CrCl3 and TMSCl cocatalysts. The reactions are effective for a variety of N-aryl α-amino acids and have excellent functional group tolerance. The Cr-free conditions generally provide higher yields and avoid the use of chromium reagents. Further, the Cr-free conditions were extended to a series of N,N-dialkyl α-amino acid substrates. Mechanistic studies suggest that the Cr-mediated reaction proceeds predominantly via in situ formation of an alkyl-Cr intermediate while the Cr-free reaction proceeds largely via radical addition to a Brønsted acid-activated ketone. Chain propagation processes provide quantum yields of 5 and 10, respectively.

3.
Clin Cancer Res ; 28(7): 1391-1401, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35046060

ABSTRACT

PURPOSE: Small cell lung cancer (SCLC) is an exceptionally lethal form of lung cancer with limited treatment options. Delta-like ligand 3 (DLL3) is an attractive therapeutic target as surface expression is almost exclusive to tumor cells. EXPERIMENTAL DESIGN: We radiolabeled the anti-DLL3 mAb SC16 with the therapeutic radioisotope, Lutetium-177. [177Lu]Lu-DTPA-CHX-A"-SC16 binds to DLL3 on SCLC cells and delivers targeted radiotherapy while minimizing radiation to healthy tissue. RESULTS: [177Lu]Lu-DTPA-CHX-A"-SC16 demonstrated high tumor uptake with DLL3-target specificity in tumor xenografts. Dosimetry analyses of biodistribution studies suggested that the blood and liver were most at risk for toxicity from treatment with high doses of [177Lu]Lu-DTPA-CHX-A"-SC16. In the radioresistant NCI-H82 model, survival studies showed that 500 µCi and 750 µCi doses of [177Lu]Lu-DTPA-CHX-A"-SC16 led to prolonged survival over controls, and 3 of the 8 mice that received high doses of [177Lu]Lu-DTPA-CHX-A"-SC16 had pathologically confirmed complete responses (CR). In the patient-derived xenograft model Lu149, all doses of [177Lu]Lu-DTPA-CHX-A"-SC16 markedly prolonged survival. At the 250 µCi and 500 µCi doses, 5 of 10 and 7 of 9 mice demonstrated pathologically confirmed CRs, respectively. Four of 10 mice that received 750 µCi of [177Lu]Lu-DTPA-CHX-A"-SC16 demonstrated petechiae severe enough to warrant euthanasia, but the remaining 6 mice demonstrated pathologically confirmed CRs. IHC on residual tissues from partial responses confirmed retained DLL3 expression. Hematologic toxicity was dose-dependent and transient, with full recovery within 4 weeks. Hepatotoxicity was not observed. CONCLUSIONS: Together, the compelling antitumor efficacy, pathologic CRs, and mild and transient toxicity profile demonstrate strong potential for clinical translation of [177Lu]Lu-DTPA-CHX-A"-SC16.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Animals , Cell Line, Tumor , Humans , Intracellular Signaling Peptides and Proteins , Ligands , Lung Neoplasms/radiotherapy , Membrane Proteins/genetics , Mice , Radioimmunotherapy , Small Cell Lung Carcinoma/radiotherapy , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...